Skip to main content

Conclusions and Outlook on Templated Electrochemical Synthesis Using Coaxial Lithography

  • Chapter
  • First Online:
Coaxial Lithography

Part of the book series: Springer Theses ((Springer Theses))

  • 385 Accesses

Abstract

Existing templated nanowire syntheses and lithography methods (including On-Wire Lithography) can be used to prepare nanowires, but only with precise control over the axial dimension (i.e., 1D-control). Control over shell thickness and composition are necessary since they are fundamental parameters in core-shell nanowires influencing chemical stability, light absorption, and exciton recombination. With the introduction of COAL, we overcome this limitation and go well beyond current synthetic capabilities as explained in this chapter.

Special thanks to Gilles R. Bourret, Taegon Oh, and Michael J. Ashley

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin, L., Park, S., Huang, L., & Mirkin, C. A. (2005). On-wire lithography. Science, 309, 113.

    Google Scholar 

  2. Wagner, R. S., & Ellis, W. C. (1964). Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 4, 89.

    Google Scholar 

  3. Hu, J. T., Odom, T. W., & Lieber, C. M. (1999). Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research, 32, 435.

    Google Scholar 

  4. Hurst, S. J., Payne, E. K., Qin, L., & Mirkin, C. A. (2006). Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angewandte Chemie, 45, 2672.

    Google Scholar 

  5. Maier, S. A. (2007). Plasmonics: Fundamentals and applications. New York: Springer.

    Google Scholar 

  6. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107, 668.

    Google Scholar 

  7. Bourret, G. R., Ozel, T., Blaber, M., Shade, C. M., Schatz, G. C., & Mirkin, C. A. (2013). Long-range plasmophore rulers. Nano Letters, 13, 2270.

    Google Scholar 

  8. Ozel, T., Nizamoglu, S., Sefunc, M. A., Samarskaya, O., Ozel, I. O., Mutlugun, E., et al. (2011). Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. ACS Nano, 5, 1328.

    Google Scholar 

  9. Ozel, T., Soganci, I. M., Nizamoglu, S., Huyal, I. O., Mutlugun, E., Sapra, S., et al. (2008). Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New Journal of Physics, 10, 083035.

    Google Scholar 

  10. Brittman, S., Gao, H., Garnett, E. C., & Yang, P. (2011). Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal. Nano Letters, 11, 5189.

    Google Scholar 

  11. Hyun, J. K., & Lauhon, L. J. (2011). Spatially resolved plasmonically enhanced photocurrent from Au nanoparticles on a Si nanowire. Nano Letters, 11, 2731.

    Google Scholar 

  12. Garnett, E. C., Brongersma, M. L., Cui, Y., & McGehee, M. D. (2011). Nanowire solar cells. Annual Review of Materials Research, 41, 269.

    Google Scholar 

  13. Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9, 205.

    Google Scholar 

  14. Ozel, T., Bourret, G. R., Schmucker, A. L., Brown, K. A., & Mirkin, C. A. (2013). Hybrid semiconductor core-shell nanowires with tunable plasmonic nanoantennas. Advanced Materials, 25, 4515.

    Google Scholar 

  15. Almquist, B. D., & Melosh, N. A. (2010). Fusion of biomimetic stealth probes into lipid bilayer cores. Proceedings of the National Academy of Sciences, 107, 5815.

    Google Scholar 

  16. Mubeen, S., Singh, N., Lee, J., Stucky, G. D., Moskovits, M., & McFarland, E. W. (2013). Synthesis of chemicals using solar energy with stable photoelectrochemically active heterostructures. Nano Letters, 13, 2110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuncay Ozel .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Ozel, T. (2016). Conclusions and Outlook on Templated Electrochemical Synthesis Using Coaxial Lithography. In: Coaxial Lithography. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45414-6_6

Download citation

Publish with us

Policies and ethics