Skip to main content

Solution Dispersible Metal Nanorings: Independent Control of Architectural Parameters and Materials Generality

  • Chapter
  • First Online:
Coaxial Lithography

Part of the book series: Springer Theses ((Springer Theses))

  • 414 Accesses

Abstract

Advances in lithographic and synthetic techniques have enabled the fabrication of a variety of complex structures on the nanoscale. In particular, the synthesis of metal nanoparticles has remained a major field of research in the last few decades since such particles show extraordinary optical properties compared to their bulk counterparts. Here, we present the use of coaxial lithography methodology to prepare metal nanorings with high precision in all three architectural parameters (with diameters ranging from 25 to 400 nm), as well as the compatibility of this technique with a variety of different single composition metals (including Au, Ag, Pt). 

Portions of this chapter have been published in Nano Letters 15 (8), 5273 (2015).

Co-authors of this work: Michael. J. Ashley, Michael B. Ross, Gilles R. Bourret, George C. Schatz, Chad A. Mirkin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones, M. R., Osberg, K. D., Macfarlane, R. J., Langille, M. R., & Mirkin, C. A. (2011). Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chemical Reviews, 111, 3736.

    Google Scholar 

  2. Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., et al. (2008). Nanostructured plasmonic sensors. Chemical Reviews, 108, 494.

    Google Scholar 

  3. Ozbay, E. (2006). Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189.

    Google Scholar 

  4. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107, 668.

    Google Scholar 

  5. Osberg, K. D., Schmucker, A. L., Senesi, A. J., & Mirkin, C. A. (2011). One-dimensional nanorod arrays: independent control of composition, length, and interparticle spacing with nanometer precision. Nano Letters, 11, 820.

    Google Scholar 

  6. Nordlander, P. (2009). The ring: a leitmotif in plasmonics. ACS Nano, 3, 488.

    Google Scholar 

  7. Qin, L., Park, S., Huang, L., & Mirkin, C. A. (2005). On-wire Lithography. Science, 309, 113.

    Google Scholar 

  8. Ozel, T., Bourret, G. R., Schmucker, A. L., Brown, K. A., & Mirkin, C. A. (2013). Hybrid semiconductor core-shell nanowires with tunable plasmonic nanoantennas. Advanced Materials, 25, 4515.

    Google Scholar 

  9. Bourret, G. R., Ozel, T., Blaber, M., Shade, C. M., Schatz, G. C., & Mirkin, C. A. (2013). Long-range plasmophore rulers. Nano Letters, 13, 2270.

    Google Scholar 

  10. Ozel, T., Nizamoglu, S., Sefunc, M. A., Samarskaya, O., Ozel, I. O., Mutlugun, E., et al. (2011). Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.  ACS Nano, 5, 1328.

    Google Scholar 

  11. Brittman, S., Gao, H., Garnett, E. C., & Yang, P. (2011). Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal. Nano Letters, 11, 5189.

    Google Scholar 

  12. Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9, 205.

    Google Scholar 

  13. Ozel, T., Bourret, G. R., & Mirkin, C. A. (2015). Coaxial lithography. Nature Nanotechnology, 10, 319.

    Google Scholar 

  14. Willets, K. A., & Van Duyne, R. P. (2007). Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 58, 267.

    Google Scholar 

  15. Jensen, T. R., Duval, M. L., Kelly, K. L., Lazarides, A. A., Schatz, G. C., & Van Duyne, R. P. (1999). Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. The Journal of Physical Chemistry B, 103, 9846.

    Google Scholar 

  16. Henzie, J., Lee, M. H., & Odom, T. W. (2007). Multiscale patterning of plasmonic metamaterials. Nature Nanotechnology, 2, 549.

    Google Scholar 

  17. Babayan, Y., McMahon, J. M., Li, S., Gray, S. K., Schatz, G. C., & Odom, T. W. (2009). Confining Standing Waves in Optical Corrals. ACS Nano, 3, 615.

    Google Scholar 

  18. Aizpurua, J., Hanarp, P., Sutherland, D., Käll, M., Bryant, G., & García de Abajo, F. (2003). Optical properties of gold nanorings. Physical Review Letters, 90, 057401.

    Google Scholar 

  19. McLellan, J. M., Geissler, M., & Xia, Y. (2004). Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings. Journal of the American Chemical Society, 126, 10830.

    Google Scholar 

  20. Larsson, E. M., Alegret, J., Käll, M., & Sutherland, D. S. (2007). Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Letters, 7, 1256.

    Google Scholar 

  21. Sun, Z., Li, Y., Zhang, J., Li, Y., Zhao, Z., Zhang, K., et al. (2008). A Universal Approach to Fabricate Various Nanoring Arrays Based on a Colloidal-Crystal-Assisted-Lithography Strategy. Advanced Functional Materials, 18, 4036.

    Google Scholar 

  22. Yan, F., & Goedel, W. A. (2004). Preparation of mesoscopic gold rings using particle imprinted templates. Nano Letters, 4, 1193.

    Google Scholar 

  23. Yuan, Z.-H., Zhou, W., Duan, Y.-Q., & Bie, L.-J. (2008). A simple approach for large-area fabrication of Ag nanorings. Nanotechnology, 19, 075608.

    Google Scholar 

  24. Lee, S. H., Choi, S. M., Yoon, S., Jeong, H., Jung, G. Y., Cho, B. K., et al. (2014). Transfer printing of metal nanoring and nanodot arrays for use in catalytic reactions. Chemical Communications.

    Google Scholar 

  25. Kim, S., Jung, J.-M., Choi, D.-G., Jung, H.-T., & Yang, S.-M. (2006). Patterned arrays of Au rings for localized surface plasmon resonance. Langmuir, 22, 7109.

    Google Scholar 

  26. Banaee, M. G., & Crozier, K. B. (2010). Gold nanorings as substrates for surface-enhanced Raman scattering. Optics Letters, 35, 760.

    Google Scholar 

  27. Near, R., Tabor, C., Duan, J., Pachter, R., & El-Sayed, M. (2012). Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Letters, 12, 2158.

    Google Scholar 

  28. Hu, Y., Chou, T., Wang, H., & Du, H. (2014). Monodisperse colloidal gold nanorings: synthesis and utility for surface-enhanced raman scattering. The Journal of Physical Chemistry C, 118, 16011.

    Google Scholar 

  29. Liusman, C., Li, S., Chen, X., Wei, W., Zhang, H., Schatz, G. C., et al. (2010). Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography. ACS Nano, 4, 7676.

    Google Scholar 

  30. Zinchenko, A. A., Yoshikawa, K., & Baigl, D. (2005). DNA-templated silver nanorings. Advanced Materials, 17, 2820.

    Google Scholar 

  31. Bridges, C. R., DiCarmine, P. M., & Seferos, D. S. (2012). Gold nanotubes as sensitive, solution-suspendable refractive index reporters. Chemistry of Materials, 24, 963.

    Google Scholar 

  32. Gong, H. M., Zhou, L., Su, X. R., Xiao, S., Liu, S. D., & Wang, Q. Q. (2009). Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions. Advanced Functional Materials, 19, 298.

    Google Scholar 

  33. Zhou, L., Fu, X.-F., Yu, L., Zhang, X., Yu, X.-F., & Hao, Z.-H. (2009). Crystal structure and optical properties of silver nanorings. Applied Physics Letters, 94.

    Google Scholar 

  34. Kong, X. Y., Ding, Y., Yang, R., & Wang, Z. L. (2004). Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 303, 1348.

    Google Scholar 

  35. Drogat, N., Granet, R., Sol, V., & Krausz, P. (2010). One-pot silver nanoring synthesis. Nanoscale Research Letters, 5, 566.

    Google Scholar 

  36. Jang, H.-J., Ham, S., Acapulco, J. A. I., Song, Y., Hong, S., Shuford, K. L., et al. (2014). Fabrication of 2D Au nanorings with Pt framework. Journal of the American Chemical Society.

    Google Scholar 

  37. Banholzer, M. J., Qin, L., Millstone, J. E., Osberg, K. D., & Mirkin, C. A. (2009). On-wire lithography: synthesis, encoding and biological applications. Nature Protocols, 4, 838.

    Google Scholar 

  38. Mirkovic, T., Foo, M. L., Arsenault, A. C., Fournier-Bidoz, S., Zacharia, N. S., & Ozin, G. A. (2007). Hinged nanorods made using a chemical approach to flexible nanostructures. Nature Nanotechnology, 2, 565.

    Google Scholar 

  39. Nicewarner-Pena, S. R., Freeman, R. G., Reiss, B. D., He, L., Pena, D. J., Walton, I. D., et al. (2001). Science, 294, 137.

    Google Scholar 

  40. Routkevitch, D., Bigioni, T., Moskovits, M., & Xu, J. M. (1996). Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. Journal of Physical Chemistry, 100, 14037.

    Google Scholar 

  41. Martin, C. R. (1994). Nanomaterials: a membrane-based synthetic approach. Science, 266, 1961.

    Google Scholar 

  42. Penner, R. M., & Martin, C. R. (1987). Preparation and electrochemical characterization of ultramicroelectrode ensembles. Analytical Chemistry, 59, 2625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuncay Ozel .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Ozel, T. (2016). Solution Dispersible Metal Nanorings: Independent Control of Architectural Parameters and Materials Generality. In: Coaxial Lithography. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45414-6_5

Download citation

Publish with us

Policies and ethics