Skip to main content

2D Nanowire Synthesis: Invention of Coaxial Lithography

  • Chapter
  • First Online:
Book cover Coaxial Lithography

Part of the book series: Springer Theses ((Springer Theses))

  • 414 Accesses

Abstract

High-resolution lithographic tools are necessary to manipulate and tailor the properties of metals and semiconductors. Here, we present a novel technique that bridges templated synthesis and lithography to generate coaxial nanowires in a parallel fashion with structural control in multiple dimensions and with materials generality.

Portions of this chapter have been published in Nature Nanotechnology 10, 319 (2015).

Co-authors of this work: Gilles R. Bourret, Chad A. Mirkin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garnett, E. C., Brongersma, M. L., Cui, Y., & McGehee, M. D. (2011). Nanowire solar cells. Annual Review of Materials Research, 41, 269.

    Google Scholar 

  2. Jones, M. R., Osberg, K. D., Macfarlane, R. J., Langille, M. R., & Mirkin, C. A. (2011). Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chemical Reviews, 111, 3736.

    Google Scholar 

  3. Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., et al. (2008). Nanostructured plasmonic sensors. Chemical Reviews, 108, 494.

    Google Scholar 

  4. Ozbay, E. (2006). Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189.

    Google Scholar 

  5. Tang, J., Huo, Z., Brittman, S., Gao, H., & Yang, P. (2011). Solution-processed core-shell nanowires for efficient photovoltaic cells. Nature Nanotechnology, 6, 568.

    Google Scholar 

  6. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., & Van Schalkwijk, W. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 4, 366.

    Google Scholar 

  7. Wallentin, J., Anttu, N., Asoli, D., Huffman, M., Åberg, I., Magnusson, M. H., et al. (2013). InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science, 339, 1057.

    Google Scholar 

  8. Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205–213. 

    Google Scholar 

  9. Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10, 911.

    Google Scholar 

  10. Bourret, G. R., Ozel, T., Blaber, M., Shade, C. M., Schatz, G. C., & Mirkin, C. A. (2013). Long-range plasmophore rulers. Nano Letters, 13, 2270.

    Google Scholar 

  11. Brittman, S., Gao, H., Garnett, E. C., & Yang, P. (2011). Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal. Nano Letters, 11, 5189.

    Google Scholar 

  12. Piner, R. D., Zhu, J., Xu, F., Hong, S., & Mirkin, C. A. (1999). “Dip-Pen” nanolithography. Science, 283, 661.

    Google Scholar 

  13. Qin, L., Park, S., Huang, L., & Mirkin, C. A. (2005). On-wire lithography. Science, 309, 113.

    Google Scholar 

  14. Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1995). Imprint of sub‐25 nm vias and trenches in polymers. Applied Physics Letters, 67, 3114.

    Google Scholar 

  15. Mubeen, S., Lee, J., Singh, N., Krämer, S., Stucky, G. D., & Moskovits, M. (2013). An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnology, 8, 247.

    Google Scholar 

  16. Tian, B., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G., et al. (2007). Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 449, 885.

    Google Scholar 

  17. Dillen, D. C., Kim, K., Liu, E.-S., & Tutuc, E. (2014). Radial modulation doping in core-shell nanowires. Nature Nanotechnology, 9, 116.

    Google Scholar 

  18. Zhu, F., Chern, G., Tchernyshyov, O., Zhu, X., Zhu, J., & Chien, C. (2006). Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings. Physical Review Letters, 96, 027205.

    Google Scholar 

  19. Penner, R. M., & Martin, C. R. (1987). Preparation and electrochemical characterization of ultramicroelectrode ensembles. Analytical Chemistry, 59, 2625.

    Google Scholar 

  20. Martin, C. R. (1994). Nanomaterials: a membrane-based synthetic approach. Science, 266, 1961.

    Google Scholar 

  21. Routkevitch, D., Bigioni, T., Moskovits, M., & Xu, J. M. (1996). Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. Journal of Physical Chemistry, 100, 14037.

    Google Scholar 

  22. Martin, B. R., Dermody, D. J., Reiss, B. D., Fang, M. M., Lyon, L. A., Natan, M. J., et al. (1999). Orthogonal self-assembly on colloidal gold-platinum nanorods. Advanced Materials, 11, 1021.

    Google Scholar 

  23. Nicewarner-Pena, S. R., Freeman, R. G., Reiss, B. D., He, L., Pena, D. J., Walton, I. D., et al. (2001). Submicrometer metallic barcodes. Science, 294, 137.

    Google Scholar 

  24. Mirkovic, T., Foo, M. L., Arsenault, A. C., Fournier-Bidoz, S., Zacharia, N. S., & Ozin, G. A. (2007). Hinged nanorods made using a chemical approach to flexible nanostructures. Nature Nanotechnology, 2, 565.

    Google Scholar 

  25. Osberg, K. D., Schmucker, A. L., Senesi, A. J., & Mirkin, C. A. (2011). One-dimensional nanorod arrays: independent control of composition, length, and interparticle spacing with nanometer precision. Nano Letters, 11, 820.

    Google Scholar 

  26. Banholzer, M. J., Qin, L., Millstone, J. E., Osberg, K. D., & Mirkin, C. A. (2009). On-wire lithography: synthesis, encoding and biological applications. Nature Protocols, 4, 838.

    Google Scholar 

  27. Qin, L., Jang, J. W., Huang, L., & Mirkin, C. A. (2007). Sub-5-nm gaps prepared by on-wire lithography: correlating gap size with electrical transport. Small, 3, 86.

    Google Scholar 

  28. Gao, H., Liu, C., Jeong, H. E., & Yang, P. (2011). Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano, 6, 234.

    Google Scholar 

  29. Ozel, T., Bourret, G. R., Schmucker, A. L., Brown, K. A., & Mirkin, C. A. (2013). Hybrid semiconductor core-shell nanowires with tunable plasmonic nanoantennas. Advanced Materials, 25, 4515.

    Google Scholar 

  30. Chen, X., Li, S., Xue, C., Banholzer, M. J., Schatz, G. C., & Mirkin, C. A. (2008). Plasmonic focusing in rod−sheath heteronanostructures. ACS Nano, 3, 87.

    Google Scholar 

  31. Schierhorn, M., Boettcher, S. W., Kraemer, S., Stucky, G. D., & Moskovits, M. (2009). Photoelectrochemical performance of CdSe nanorod arrays grown on a transparent conducting substrate. Nano Letters, 9, 3262.

    Google Scholar 

  32. Liu, R., & Lee, S. B. (2008). MnO2/poly (3, 4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. Journal of the American Chemical Society, 130, 2942.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuncay Ozel .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Ozel, T. (2016). 2D Nanowire Synthesis: Invention of Coaxial Lithography. In: Coaxial Lithography. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45414-6_4

Download citation

Publish with us

Policies and ethics