Skip to main content

1D Nanowire Synthesis: Extending the OWL Toolbox with Semiconductors to Explore Plasmon-Exciton Interactions in the Form of Long-Range Optical Nanoscale Rulers

  • Chapter
  • First Online:
Coaxial Lithography

Part of the book series: Springer Theses ((Springer Theses))

  • 398 Accesses

Abstract

Förster resonant energy transfer (FRET) between molecular fluorophores has been commonly used to measure the distance between molecular entities within biological systems. The technique, however, is limited to the sub-10 nm range. Herein, we take advantage of the strong plasmonic fields generated by gold nanorods to develop the first long-range “plasmophore rulers” (valid up to 100 nm) based on the distance-dependent modulation of the emission shape of a luminescent object by a resonant plasmonic nanorod.

Portions of this chapter have been published in Nano Letters 13 (5), 2270 (2013).

Co-authors of this work: Gilles R. Bourret, Martin Blaber, Chad M. Shade, George C. Schatz, Chad A. Mirkin.

Copyright 2013 American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stryer, L., & Haugland, R. P. (1967). FRET paper. PNAS, 58, 719–725.

    Article  CAS  Google Scholar 

  2. Weiss, S. (1999). Fluorescence spectroscopy of single biomolecules. Science, 283, 1676.

    Article  CAS  Google Scholar 

  3. Singh, A. K., Khan, S. A., Fan, Z., Demeritte, T., Senapati, D., Kanchanapally, R., et al. (2012). Development of a long-range surface-enhaced raman spectrosocopty ruler. Journal of the American Chemical Society, 134, 8662.

    Article  CAS  Google Scholar 

  4. Yun, C. S., Javier, A., Jennings, T., Fisher, M., Hira, S., Peterson, S., et al. (2005). Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. Journal of the American Chemical Society, 127, 3115.

    Article  CAS  Google Scholar 

  5. Dulkeith, E., Ringler, M., Klar, T. A., & Feldmann, J. (2005). Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression. Nano Letters, 5, 585.

    Article  CAS  Google Scholar 

  6. Seelig, J., LEslie, K., Renn, A., Kuhn, S., Jacobsen, V., Corput, M. V. D., et al. (2007). Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level. Nano Letters, 7, 685.

    Google Scholar 

  7. Reinhard, B. M., Siu, M., Agarwal, H., Alivisatos, A. P., & Liphardt, J. (2005). Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Letters, 5, 2246.

    Article  CAS  Google Scholar 

  8. Sonnichsen, C., Reinhard, B. M., Liphardt, J., & Alivisatos, A. P. (2005). A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnology, 23, 741.

    Article  Google Scholar 

  9. Liu, G. L., Yin, Y., Kunchakarra, S., Mukherjee, B., Gerion, D., Jett, S. D., et al. (2006). A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotechnology, 1, 47.

    Article  CAS  Google Scholar 

  10. Jain, P. K., Huang, W., & El-Sayed, M. A. (2007). On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Letters, 7, 2080.

    Article  CAS  Google Scholar 

  11. Reinhard, B. M., Sheikholeslami, S., Mastroianni, A., Alivisatos, A. P., & Liphardt, J. (2007).  Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. PNAS, 104, 2667.

    Article  CAS  Google Scholar 

  12. Jun, Y.-W., Sheikholeslami, S., Hostetter, D. R., Tajon, C., Craik, C. S., & Alivisatos, A. P. (2009). Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. PNAS, 106, 17735.

    Article  CAS  Google Scholar 

  13. Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P., & Giessen, H. (2011). Three-dimensional plasmon rulers. Science, 332, 1407.

    Article  CAS  Google Scholar 

  14. Lakowicz, J. R., Ray, K., Chowdhury, M., Szmacinski, H., Fu, Y., Zhang, J., et al. (2008). Plasmon-controlled fluorescence: a new paradigm in fluoresecence spectroscopy. The Analyst, 133, 1308.

    Article  CAS  Google Scholar 

  15. Kim, B.-H., Cho, C.-H., Mun, J.-S., Kwon, M.-K., Park, T.-Y., Kim, J. S., et al. (2008). Enhacement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons. Advanced Materials, 20, 3100.

    Article  CAS  Google Scholar 

  16. Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., & White, J. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9, 193.

    Article  CAS  Google Scholar 

  17. Ferry, V. E., Munday, J. N., & Atwater, H. A. (2010). Design considerations for plasmonic photovoltaics. Advanced Materials, 22, 4794.

    Article  CAS  Google Scholar 

  18. Mubeen, S., Hernadez-Sosa, G., Moses, D., Lee, J., & Moskovits, M. (2011). Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Letters, 11, 5548.

    Article  CAS  Google Scholar 

  19. Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10, 911.

    Article  CAS  Google Scholar 

  20. Christopher, P., Xin, H., & Linic, S. (2011). Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 3, 467.

    CAS  Google Scholar 

  21. Lee, J., Mubeen, S., Ji, X., Stucky, G. D., & Mokovits, M. (2012). Plasmonic photoanodes for solar water splitting with visible light. Nano Letters, 12, 5014.

    Article  CAS  Google Scholar 

  22. Neretina, S., Qian, W., Dreaden, E. C., & El-Sayed, M. A. (2009). Exciton lifetime tuning by changing the plasmon field orientation with respect to the exciton transition moment direction: CdTe-Au core-shell nanorods. Nano Letters, 9, 1242.

    Article  CAS  Google Scholar 

  23. Wang, Y., Yang, T., Tuominen, M. T., & Achermann, M. (2009). Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures. Physical Review Letters, 102, 163001.

    Article  Google Scholar 

  24. Pompa, P. P., Martiradonna, L., Torre, A. D., Sala, F. D., Manna, L., Vittorio, M. D., et al. (2006). Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nature Nanotechnology, 1, 126.

    Article  CAS  Google Scholar 

  25. Singh, M. P., & Strouse, G. F. (2010). Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle. Journal of the American Chemical Society, 132, 9383.

    Article  CAS  Google Scholar 

  26. O’Carroll, D. M., Fakonas, J. S., Callahan, D. M., Schierhorn, M., & Atwater, H. A. (2012).  Metal-polymer-metal split-dipole nanoantennas. Advanced Materials, 24(OP13), 6.

    Google Scholar 

  27. Taminiau, T. H., Stefani, F. D., Segerink, F. B., & Hulst, N. F. V. (2008). Optical antennas direct single-molecule emission. Nature Photonics, 2, 234.

    Article  CAS  Google Scholar 

  28. Ming, T., Zhao, L., Yang, Z., Chen, H., Sun, L., Wang, J., et al. (2009). Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Letters, 9, 3896.

    Article  CAS  Google Scholar 

  29. O’Carroll, D. M., Hofmann, C. E., & Atwater, H. A. (2010). Conjugated polymer/metal nanowire heterostructure plasmonic antennas. Advanced Materials, 22, 1223.

    Article  Google Scholar 

  30. Ozel, T., Nizamoglu, S., Sefunc, M. A., Samarskaya, O., Ozel, I. O., Mutlugun, E., et al. (2011). Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. ACS Nano, 5, 1328.

    Article  CAS  Google Scholar 

  31. Ming, T., Zhao, L., Chen, H., Woo, K. C., Wang, J., & Lin, H.-Q. (2011). Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures. Nano Letters, 11, 2296.

    Article  CAS  Google Scholar 

  32. Cohen-Hoshen, E., Bryant, G. W., Pinkas, I., Sperling, J., & Bar-Joseph, I. (2012). Exciton-plasmon interaction in quantum dot gold nanoparticle structures. Nano Letters, 12, 4260.

    Article  CAS  Google Scholar 

  33. Kottmann, P. K., Martin, O. J. F., Smith, D. R., Schultz, S. (2000). Spectral response of plasmon resonant nanoparticles with a non-regular shape. Optics Express, 6, 213.

    Article  Google Scholar 

  34. Ringler, M., Schwemer, A., Wunderlich, M., Nichtl, A., Kurzinger, K., Klar, T. A., et al. (2008). Shaping emission of fluorescent molecules with single plasmonic nanoresonators. Physical Review Letters, 100, 203002.

    Article  CAS  Google Scholar 

  35. Ozel, T., Soganci, I. M., Nizamoglu, S., Huyal, I. O., Mutlugun, E., Sapra, S., et al. (2008). Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New Journal of Physics, 10, 083035.

    Article  Google Scholar 

  36. Zhao, L., Ming, T., Chen, H., Liang, Y., & Wang, J. (2011). Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods. Nanoscale, 3, 3849.

    Article  CAS  Google Scholar 

  37. Yun, C. S., Javier, A., Jennings, T., Fisher, M., Hira, S., Peterson, S., et al. (2005). Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. Journal of the American Chemical Society, 127, 3115.

    Article  CAS  Google Scholar 

  38. Qin, L., Park, S., Huang, L., & Mirkin, C. A. (2005). On-wire lithography. Science, 309, 113.

    Article  CAS  Google Scholar 

  39. Qin, L., Jang, J. W., Huang, L., & Mirkin, C. A. (2007). Sub-5-nm gaps prepared by on-wire lithography: correlating gap size with electrical transport. Small (Weinheim an der Bergstrasse, Germany), 3, 86.

    Article  CAS  Google Scholar 

  40. Banholzer, M. J., Li, S., Ketter, J. B., Rozkiewicz, D. I., Schatz, G. C., & Mirkin, C. A. (2008). An electrochemical approach to and the physical consequences of preparing nanostructures from gold nanorods with smooth ends. The journal of physical chemistry. C, Nanomaterials and interfaces, 112, 15729.

    Article  CAS  Google Scholar 

  41. Banholzer, M. J., Qin, L., Millstone, J. E., Osberg, K. D., & Mirkin, C. A. (2009). On-wire lithography: synthesis, encoding and biological applications. Nature Protocols, 4, 838.

    Article  CAS  Google Scholar 

  42. Osberg, K. D., Schmucker, A. L., Senesi, A. J., & Mirkin, C. A. (2011). One-dimensional nanorod arrays: independent control of composition, length, and interparticle spacing with nanometer precision. Nano Letters, 11, 820.

    Article  CAS  Google Scholar 

  43. Gunnarsson, L., Rindzevicius, T., Prikulis, J., Kasemo, B., Kall, M., Zou, S., et al. (1079). Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. The Journal of Physical Chemistry B, 2005, 109.

    Google Scholar 

  44. Chen, X., Jeon, Y.-M., Jang, J.-W., Qin, L., Huo, F., Wei, W., et al. (2008). Plasmonic focusing in rod−sheath heteronanostructures. Journal of the American Chemical Society, 130, 8166.

    Article  CAS  Google Scholar 

  45. Schmucker, A. L., Barin, G., Brown, K. A., Rycenga, M., Coskun, A., Buyukcakir, O., et al. (2012). Electronic and optical vibrational spectroscopy of molecular transport junctions created by on-wire lithography. Small, 9, 1900.

    Google Scholar 

  46. Lidong, Q., Shengli, Z., Can, X., Ariel, A. C. S. G., & Mirkin, C. A. (2006). Designing, fabricating, and imaging raman hot spots. PNAS, 103, 13300.

    Google Scholar 

  47. Qin, L., Banholzer, M. J., Millstone, J. E., & Mirkin, C. A. (2007). Nanodisk codes. Nano Letters, 7, 3849.

    Article  CAS  Google Scholar 

  48. Osberg, K. D., Rycenga, M., Bourret, G. R., Brown, K. A., & Mirkin, C. A. (2012). Dispersible surface-enhaced raman scattering nanosheets. Advanced Materials,  24, 6065 doi:10.1002/adma.201202845.

    Google Scholar 

  49. Osberg, K. D., Rycenga, M., Harris, N., Schmucker, A. L., Langille, M. R., Schatz, G. C., et al. (2012). Dispersible gold nanorod dimers with sub-5nm gaps as local amplifiers for surface-enhanced raman scattering. Nano Letters, 12, 3828.

    Article  CAS  Google Scholar 

  50. Vardeny, Z., Ehrenfreund, E., Brafman, O., Nowak, M., Schaffer, H., Heeger, A., et al. (1986). Photogeneration of confined soliton pairs (bipolarons) in polythiophene. Physical Review Letters, 56, 671.

    Article  CAS  Google Scholar 

  51. Draine, B. T., & Flatau, P. J. (1994). Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 11, 1491.

    Article  Google Scholar 

  52. Draine, B. T., & Flatau, P. J. (2012). User guide for the discrete dipole approximation code DDSCAT 7.2. arXiv:1202.3424 [physics.comp-ph] 2012.

  53. Flatau, P. J., & Draine, B. T. (2012). Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Optics Express, 20, 1247.

    Article  CAS  Google Scholar 

  54. Fang, Y., Chang, W.-S., Willingham, B., Swanglap, P., Dominguez-Medina, S., & Link, S. (2012). Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS Nano, 6, 7177.

    Article  CAS  Google Scholar 

  55. Perepichka, I. F., Perepichka, D. F., Meng, H., & Wudl, F. (2005). Light‐emitting polythiophenes. Advanced Materials, 17, 2281.

    Article  CAS  Google Scholar 

  56. Sonnichsen, C., Reinhard, B. M., Liphardt, J., & Alivisatos, A. P. (2005). A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnology, 23, 741.

    Article  Google Scholar 

  57. Liu, G. L., Yin, Y., Kunchakarra, S., Mukherjee, B., Gerion, D., Jett, S. D., et al. (2006). A Nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotechnology, 1, 47.

    Article  CAS  Google Scholar 

  58. Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P., & Giessen, H. (2011). Three-dimensional plasmon rulers. Science, 332, 1407.

    Article  CAS  Google Scholar 

  59. Kerker, M. (1969). The scattering of light and other electromagnetic radiation. New York: Academic Press.

    Google Scholar 

  60. Schatz, G. C., & Ratner, M. A. (2002). Quantum mechanics in chemistry; Courier Dover Publications, 2002.

    Google Scholar 

  61. Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical Review B, 6, 4370.

    Article  CAS  Google Scholar 

  62. Kreibig, U., & Fragstein, C. v. (1969). The limitation of electron mean free path in small silver particles. Zeitschrift für Physik, 224, 307.

    Google Scholar 

  63. Landau, L. D., Bell, J., Kearsley, M., Pitaevskii, L., Lifshitz, E., & Sykes, J. (1984). Electrodynamics of continuous media (Vol. 8). Amsterdam: Elsevier.

    Google Scholar 

  64. Ausman, L. K., & Schatz, G. C. (2009). On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres. The Journal of Chemical Physics, 131, 084708.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuncay Ozel .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Ozel, T. (2016). 1D Nanowire Synthesis: Extending the OWL Toolbox with Semiconductors to Explore Plasmon-Exciton Interactions in the Form of Long-Range Optical Nanoscale Rulers. In: Coaxial Lithography. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45414-6_2

Download citation

Publish with us

Policies and ethics