Advertisement

Applications

  • Chenxiao CaiEmail author
  • Zidong Wang
  • Jing Xu
  • Yun Zou
Chapter
  • 541 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 78)

Abstract

The theory of SPM originated from fluid dynamics and applied widely in the area of aerospace systems (Ramnath, Multiple Scales Theory and Aerospace Applications (2010) [110]). In (Stoica, Berbente, Condurache Rev Roum des Sci Tech Serie de Mecani Appl, 45, 277–293 (2002) [134]), a design method was proposed for the manual flight control system corresponding to the lateral motion of the aircraft based on SPaTSs

Keywords

Singular Perturbation Fast Subsystem Singular Perturbation Theory Direct Torque Control Linear Parameter Vary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Achleitner, F., Szmolyan, P.: Saddle-node bifurcation of viscous profiles. Phys. D 241(20), 1703–1717 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alvarez-Ramirez, J., Espinosa-Perez, G., Noriega-Pineda, D.: Current-mode control of DC-DC power converters: a backstepping approach. Int. J. Robust Nonlinear Control, pp. 421–442 (2003)Google Scholar
  3. 3.
    Avrachenkov, K., Litvak, N., Pham, K.S.: A singular perturbation approach for choosing the pagerank damping factor. Internet Mathematics 5(1), 47–69 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bakharev, F.L., Nazarov, S.A., Ruotsalainen, K.M.: A gap in the spectrum of the Neumann-Laplacian on a periodic waveguide. Appl. Anal. 92(9), 1–27 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barany, E., Schaffer, S., Wedeward, K., Ball, S.: Nonlinear controllability of singularly perturbed models of power flow networks. In: 43rd IEEE Conference on Decision and Control, vol. 5, pp. 4826–4832 (2004)Google Scholar
  6. 6.
    Beauwens, R., Mika, J.: The improved prompt jump approximation. Transp. Theory Stat. Phys. 36(1–3), 211–225 (2007)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bertrand, S., Hamel, T., Piet-Lahanier, H.: Stability analysis of an UAV controller using singular perturbation theory. In: The 17th International Federation of Automatic Control World Congress, pp. 5706–5711 (2008)Google Scholar
  8. 8.
    Bianchi, F.D., Battista, H.D., Mantz, R.J.: Wind Turbine Control Systems Principles. Modelling and Gain Scheduling Design. Springer, London (2007)CrossRefGoogle Scholar
  9. 9.
    Biyik, E., Arcak. M.: Area aggregation and time scale modeling for sparse nonlinear networks. In: 45th IEEE Conference on Decision and Control, pp. 4046–4051 (2006)Google Scholar
  10. 10.
    Biyik, E., Arcak, M.: Area aggregation and time-scale modeling for sparse nonlinear networks. Syst. Control Lett. 57(2), 142–149 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bondarenko, V.V., Markov, Y.G., Mikisha, A.M., Rykhlova, L.V., Skorobogatykh, I.V.: Gravitational-tidal evolution of planetary subsystems of the Sun. Astron. Astrophys. Trans. 25(4), 275–290 (2006)CrossRefGoogle Scholar
  12. 12.
    Boskovic, J.D., Mehra, R.K.: A decentralized fault-tolerant control system for accommodation of failures in higher-order flight control actuators. IEEE Trans. Control Syst. Technol. 18(5), 1103–1115 (2010)CrossRefGoogle Scholar
  13. 13.
    Bristeau, P.J., Martin, P., Salaun, E., Petit, N.: The role of propeller aerodynamics in the model of a quadrotor UAV. In: Proceedings of the European Control Conference, pp. 683–688 (2009)Google Scholar
  14. 14.
    Bykov, V., Goldfarb, I., Goldshtein, V., Barry Greenberg, J.: Thermal explosion in a hot gas mixture with fuel droplets: a two reactant model. Combust. Theor. Model. 6, 339–359 (2002)CrossRefGoogle Scholar
  15. 15.
    Bykov, V., Goldshtein, V., Maas, U.: Simple global reduction technique based on decomposition approach. Combust. Theor. Model. 12(2), 389–405 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cai, G., Chen, B.M., Lee, T.H.: Unmanned Rotorcraft Systems. Springer, New York (2011)zbMATHCrossRefGoogle Scholar
  17. 17.
    Cai, G., Wang, B., Chen, B.M., Lee, T.H.: Design and implementation of a flight control system for an unmanned rotorcraft using RPT control approach. Asian J. Control 15(1), 95–119 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Cao, X.T., Li, Y.C.: Distributed parameter singular perturbation model and cooperative control of flexible manipulators. Proceedings of 2005 International Conference on Machine Learning and Cybernetics 2, 1009–1014 (2005)MathSciNetGoogle Scholar
  19. 19.
    Castellanos-Sahagun, E., Alvarez, J.: Synthesis of two-point linear controllers for binary distillation columns. Chem. Eng. Commun. 193(2), 206–232 (2006)CrossRefGoogle Scholar
  20. 20.
    Celikovsky, S., Papacek, S., Cervantes Herrera, A., Ruiz Leon, J.: Singular perturbation based solution to optimal microalgal growth problem and its infinite time horizon analysis. In: 47th IEEE Conference on Decision and Control, pp. 2662–2667 (2008)Google Scholar
  21. 21.
    Cervantes, I., Kelly, R., Alvarez-Ramirez, J., Moreno, J.: A robust velocity field control. IEEE Trans. Control Syst. Technol. 10(6), 888–894 (2002)CrossRefGoogle Scholar
  22. 22.
    Chakrabortty, A., Scholtz, E.: Time-scale separation designs for performance recovery of power systems with unknown parameters and faults. IEEE Trans. Control Syst. Technol. 19(2), 382–390 (2011)CrossRefGoogle Scholar
  23. 23.
    Chen, Y., Liu, Y.Q.: Summary of singular perturbation modeling of multi-time scale power systems. In: 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, pp. 1–4 (2005)Google Scholar
  24. 24.
    Chen, H.H.: Stability and chaotic dynamics of a rate gyro with feedback control under uncertain vehicle spin and acceleration. J. Sound Vib. 273(4–5), 949–968 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Cheng, M.B., Radisavljevic, V., Chang, C.C., Lin, C.F., Su, W.C.: A sampled-data singularly perturbed boundary control for a heat conduction system with noncollocated observation. IEEE Trans. Autom. Control 54(6), 1305–1310 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Cheong, J., Youm, Y., Chung, W.K.: Joint tracking controller for multi-link flexible robot using disturbance observer and parameter adaptation scheme. J. Robotic Syst. 19(8), 401–417 (2002)zbMATHCrossRefGoogle Scholar
  27. 27.
    Cheong, J., Chung, W.K., Youm, Y.: PID composite controller and its tuning for flexible link robots. Proc. IEEE Int. Conf. Intell. Robots Syst. 19(8), 2122–2127 (2002)Google Scholar
  28. 28.
    Cheong, J., Chung, W.K., Youm, Y.: Inverse kinematics of multilink flexible robots for high-speed applications. IEEE Trans. Robot. Autom. 20(2), 269–282 (2004)CrossRefGoogle Scholar
  29. 29.
    Chevallereau, C.: Time-scaling control for an underactuated biped robot. IEEE Trans. Robot. Autom. 19(2), 362–368 (2003)CrossRefGoogle Scholar
  30. 30.
    Contou-Carrere, M.N., Sotiropoulos, V., Kaznessis, Y.N., Daoutidis, P.: Model reduction of multi-scale chemical Langevin equations. Syst. Control Lett. 60(1), 75–86 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Dabney, J.B., Ghorbel, F.H., Wang, Z.Y.: Modeling closed kinematic chains via singular perturbations. Proc. Am. Control Conf. 5, 4104–4110 (2002)Google Scholar
  32. 32.
    Dai, J.H., Gu, E.: Trajectory-tracking control of a multiple flexible joint robot based on singular perturbation. Proc. 5th Biannual World Autom. Congr. 14, 77–82 (2002)Google Scholar
  33. 33.
    Dai, J.H., Gu, E.: Singular perturbation method in control of multiple flexible-joint robots. Intell. Autom. Soft Comput. 9(2), 121–128 (2003)CrossRefGoogle Scholar
  34. 34.
    Duan, C.Y., Zhang, Y.X., Dong, C.Y., Sun, R.: Adaptive sliding mode control for bank-to-turn missiles. In: 9th International Conference on Electronic Measurement and Instruments, pp. 3512–3517 (2009)Google Scholar
  35. 35.
    Esteban, S., Rivas, D.: Singular perturbation control of the longitudinal flight dynamics of a UAV. In: UKACC International Conference on Control, pp. 310–315 (2012)Google Scholar
  36. 36.
    Esteban, S., Rivas, D.: Singular perturbation control of the longitudinal flight dynamics of an UAV. In: 2012 UKACC International Conference on Control, pp. 310–315 (2012)Google Scholar
  37. 37.
    Flores, G., Lozano, R.: Lyapunov-based controller using singular perturbation theory: an application on a mini-UAV. Proc. Am. Control Conf. 45, 1596–1601 (2013)Google Scholar
  38. 38.
    Fradkov, A., Andrievsky, B.: Singular perturbations of systems controlled by energy-speed-gradient method. In: 43rd IEEE Conference on Decision and Control, vol. 4, pp. 3441–3446 (2004)Google Scholar
  39. 39.
    Fraser, S.J.: Slow manifold for a bimolecular association mechanism. J. Chem. Phys. 120(7), 3075–3085 (2004)CrossRefGoogle Scholar
  40. 40.
    Fridman, L.M.: Slow periodic motions with internal sliding modes in variable structure systems. Int. J. Control 75(7), 524–537 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Fridman, L.: Slow periodic motions in variable structure systems. Int. J. Syst. Sci. 33(14), 1145–1155 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Fu, D.F., Xing, Y.: Study on linear dynamic model and analysis of operating characteristics of high-power VSCF wind energy conversion system. In: World Non-Grid-Connected Wind Power and Energy Conference, pp. 1–6 (2009)Google Scholar
  43. 43.
    Fu, L., Wang, L.L., Hu, J.H.: Coning algorithm based on singular perturbation. Aircr. Eng. Aerosp. Technol. 85(3), 178–185 (2013)CrossRefGoogle Scholar
  44. 44.
    Galli, M., Groppi, M., Riganti, R., Spiga, G.: Singular perturbation techniques in the study of a diatomic gas with reactions of dissociation and recombination. Appl. Math. Comput. 146(2–3), 509–531 (2003)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Gandhi, P.S., Ghorbel, F.: High-speed precision tracking with harmonic drive systems using integral manifold control design. Int. J. Control 78(2), 112–121 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Ganjefar, S.: Adaptive wavenet controller design for teleoperation systems with variable time delays using singular perturbation method. Int. J. Control Autom. Syst. 11(3), 597–607 (2013)CrossRefGoogle Scholar
  47. 47.
    Garijo, A., Marotta, S.M., Russell, E.D.: Singular perturbations in the quadratic family with multiple poles. J. Differ. Equ. Appl. 19(1), 124–145 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Philadelphia: Society for industrial and applied mathematics (1994)Google Scholar
  49. 49.
    Gorinevsky, D., Nwadiogbu, E., Mylaraswamy, D.: Model-based diagnostics for small-scale turbomachines. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 4, pp. 1–5 (2002)Google Scholar
  50. 50.
    Han, D.K., Chang, P.H.: A robust two-time-scale control design for a pneumatic vibration isolator. In: 46th IEEE Conference on Decision and Control, pp. 1666–1672 (2007)Google Scholar
  51. 51.
    Hasson, J., Bobrovsky, B.Z.: Optimal design of an all-digital chip timing recovery loop for direct-sequence spreads pectrum systems. Eur. Trans. Telecommun. 16(6), 509–520 (2004)CrossRefGoogle Scholar
  52. 52.
    Heiges, M.W., Menon, P.K.A., Achrage, D.P.: Synthesis of a helicoptor full-authority controller. J. Guidance 15(1), 222–227 (1989)CrossRefGoogle Scholar
  53. 53.
    Heldt, T., Chang, J.L., Chen, J.J.S., Verghese, G.C., Mark, R.G.: Cycle-averaged dynamics of a periodically driven, closed-loop circulation model. Control Eng. Pract. 13(9), 1163–1171 (2005)CrossRefGoogle Scholar
  54. 54.
    Hong, J.W., Yeom, J.H., Song, S.H., Ha, I.J.: A singular perturbation-like method to compensate the effect of fin-actuator dynamics in nonlinear missile control. In: SICE-ICASE International Joint Conference, pp. 837–841 (2006)Google Scholar
  55. 55.
    Huang, Y., Cai, C., Zou, Y.: Output feedback finite frequency \(H_{\infty }\) control for SISO singularly perturbed systems. In: Asian Control Conference, pp. 1188–1192 (2009)Google Scholar
  56. 56.
    Huang, H., Hoffman, G.M., Waslander, S.L., Tomlin, C.J.: Aerodynamics and control of autonumous quadrotor helicopters in aggressive maneuvering. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3277–3282 (2009)Google Scholar
  57. 57.
    Huang, Y., Cai, C., Zou, Y.: Finite frequency positive real control for singularly perturbed systems. Int. J. Control Autom. Syst. 9(2), 376–383 (2011)CrossRefGoogle Scholar
  58. 58.
    Jagodzinski, S., Lachowicz, M.: On two incompressible hydrodynamic limits of the Boltzmann-Enskog Equation. I. formal derivations. Transp. Theory Stat. Phys. 33(2), 157–181 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Jagodzinski, S., Lachowicz, M.: On two incompressible hydrodynamic limits of the Boltzmann-Enskog Equation II: a rigorous result. Transp. Theory Stat. Phys. 34(6), 447–474 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Jaison, S., Naidu, D.S., Zydek, D.: Time scale analysis and synthesis of wind energy conversion systems. In: Proceedings of the WSEAS-NAUN 4th International Conference on Circuits, Systems, Control and Signals, pp. 21–26 (2013)Google Scholar
  61. 61.
    Jogwar, S.S., Baldea, M., Daoutidis, P.: Dynamics and control of reactor- feed effluent heat exchanger networks. In: Proceedings of the American Control Conference, pp. 1481–1486 (2008)Google Scholar
  62. 62.
    Kaper, H.G., Kaper, T.J.: Asymptotic analysis of two reduction methods for systems of chemical reactions. Phys. D 165(1–2), 66–93 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Kapitonov, B.V., Raupp, M.A.: Boundary observation and exact control of multilayered piezoelectric body. Math. Methods Appl. Sci. 26(5), 431–452 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Keesman, K.J.: State and parameter estimation in biotechnical batch reactors. Control Eng. Pract. 10(2), 219–225 (2002)CrossRefGoogle Scholar
  65. 65.
    Keesman, K.J., Peters, D., Lukasse, L.J.S.: Optimal climate control of a storage facility using local weather forecasts. Control Eng. Pract. 11(5), 505–516 (2003)CrossRefGoogle Scholar
  66. 66.
    Kellogg, R.B., Stynes, M.: A singularly perturbed convection-diffusion problem in a half-plane. Appl. Anal. 85(12), 1471–1485 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Khalil, H.K., Chen, F.: \(H_{\infty }\) control of two-time-scale systems. Proc. Am. Control Conf. 19, 1151–1152 (1992)MathSciNetGoogle Scholar
  68. 68.
    Kimball, J.W., Krein, P.T.: Singular perturbation theory for DC-DC converters and application to PFC converters. In: IEEE Power Electronics Specialists Conference, pp. 882–887 (2007)Google Scholar
  69. 69.
    Kimball, J.W., Krein, P.T.: Singular perturbation theory for DC-DC converters and application to PFC converters. IEEE Trans. Power Electron. 23(6), 2970–2981 (2008)CrossRefGoogle Scholar
  70. 70.
    Kokotovic, P., Khalil, H., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, New York (1986)zbMATHGoogle Scholar
  71. 71.
    Krishnamurthy, V., Monfared, S.M., Cornell, B.: Ion channel biosensors–part II: dynamic modeling, analysis, and statistical signal processing. IEEE Trans. Nanotechnol. 9(3), 313–321 (2010)CrossRefGoogle Scholar
  72. 72.
    Lam, S.H.: Model reductions with special CSP data. Combust. Flame 160(2), 2707–2711 (2013)CrossRefGoogle Scholar
  73. 73.
    Li, X.Y., Chen, X.H., Tang, G.Q.: Output feedback control of doubly-fed induction generator based on multi-time scale model. In: Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 2798–2802 (2008)Google Scholar
  74. 74.
    Li, D., Chen, C.: Wind speed model for dynamic simulation of wind power generation system. In: Proceedings of the CSEE (November 2005)Google Scholar
  75. 75.
    Li, K., Phang, S.K., Chen, B.M., Lee, T.H.: Platform design and mathematical modeling of an ultralight quadrotor helicopters in aggressive maneuvering. In: Proceedings of the International Conference on Unmanned Aircraft Systems, pp. 1066–1075 (2013)Google Scholar
  76. 76.
    Li, Y., Wang, J., Yang, G.: Sub-optimal linear quadratic control for singularly perturbed systems. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 2, pp. 3698–3703 (2001)Google Scholar
  77. 77.
    Li, P., Zhang, B.H., Shu, J., Bo, Z.Q., Klimek, A.: Research on order reduction of power system modeling for dynamic voltage stability analysis. In: IEEE PES Transmission and Distribution Conference and Exposition, pp. 1–5 (2010)Google Scholar
  78. 78.
    Liu, H., Sun, F., He, K., Sun, Z.: Survey of singularly perturbed control systems: theory and applications. Control Theory Appl. 20(1), 1–7 (2003)MathSciNetGoogle Scholar
  79. 79.
    Liu, H., Sun, F., Hu, Y.: \(H_{\infty }\) control for fuzzy singularly perturbed systems. J. Fuzzy Sets Syst. 155(2), 272–291 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Lizarraga, I., Etxebarria, V.: Combined PD-\({H}_\infty \) approach to control of flexible link manipulators using only directly measurable variables. Cybern. Syst. 34(1), 19–31 (2003)zbMATHCrossRefGoogle Scholar
  81. 81.
    Luse, D.W.: Frequency domain results for systems with multiple time scales. IEEE Trans. Autom. Control 31(10), 918–924 (1986)zbMATHCrossRefGoogle Scholar
  82. 82.
    Luse, D.W., Khail, H.K.: Frequency domain results for systems with slow and fast dynamics. IEEE Trans. Autom. Control 30(12), 1171–1179 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Ma, F., Fu, L.J.: Principle of multi-time scale order reduction and its application in AC/DC hybrid power systems. In: International Conference on Electrical Machines and Systems, pp. 3951–3956 (2008)Google Scholar
  84. 84.
    Manhartsgruber, B.: Stability analysis of the servohydraulic equations with linear state feedback and harmonic reference signal. Nonlinear Dyn. Eng. Syst. 3(1), 92–95 (2003)Google Scholar
  85. 85.
    Massoum, A., Fellah, M.K., Meroufel, A., Wira, P., Bendaoud, A.: Neuro-fuzzy control of a singularly perturbed permanent magnet synchronous machine fed by a three levels inverter. In: IEEE International Symposium on Industrial Electronics, pp. 1867–1872 (2008)Google Scholar
  86. 86.
    Mastellone, S., Stipanovic, D.M., Spong, M.W.: Multi-agent formation control and trajectory tracking via singular perturbation. In: IEEE International Conference on Control Applications, pp. 557–562 (2007)Google Scholar
  87. 87.
    Mease, K.: Multiple time-scales in nonlinear flight mechanics: diagnosis and modeling. Appl. Math. Comput. 164(2), 627–648 (2005)MathSciNetzbMATHGoogle Scholar
  88. 88.
    Mei, P., Cai, C., Zou, Y.: A generalized KYP lemma based approach for \(H_\infty \) control of singularly perturbed systems. Circuits Syst. Signal Proc. 28(6), 945–957 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Meyer-Baese, A., Cappendijk, S., Althaus, E.: Global uniform stability analysis of biological networks with different time-scales under perturbations. In: International Joint Conference on Neural, pp. 2098–2102 (2009)Google Scholar
  90. 90.
    Monfared, S.M., Krishnamurthy, V., Cornell, B.: Stochastic modeling and signal processing of nano-scale protein-based biosensors. In: IEEE International Workshop on Genomic Signal Processing and Statistics, pp. 1–6 (2009)Google Scholar
  91. 91.
    Munteanu, I., Bratcu, A., Cutuluslis, N., Ceanga, E.: Optimal Control of Wind Energy Systems: Towards a Global Approach. Springer, London (2008)Google Scholar
  92. 92.
    Naidu, D.S.: Analysis of non-dimensional forms of singular perturbation structures for hypersonic vehicles. Acta Astronaut. 66(3–4), 577–586 (2010)CrossRefGoogle Scholar
  93. 93.
    Naidu, D.S.: Singular perturbation analysis of a flexible beam used in underwater exploration. Int. J. Syst. Sci. 42(1), 183–194 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Naidu, D.S., Calise, A.J.: Singular perturbation methods and time scales in guidance and control of aerospace systems: a survey. AIAA J. Guidance Control Dyn. 24(6), 1057–1078 (2001)CrossRefGoogle Scholar
  95. 95.
    Nakada, K., Sato, Y.D., Matsuoka, K.: Theoretical analysis of phase resetting on matsuoka oscillators. In: Advances in Cognitive Neurodynamics (III), pp. 531–536. Springer, Netherlands (2013)Google Scholar
  96. 96.
    Nguyen, H.M., Naidu, D.S.: Singular perturbation analysis and synthesis of wind energy conversion systems under stochastic environments. In: Advances in Systems Theory, Signal Processing and Computational Science, pp. 283–288 (2012)Google Scholar
  97. 97.
    Nguyen, H.M., Naidu, D.S.: Time scale analysis and control of wind energy conversion systems. In: 5th International Symposium on Resilient Control Systems, pp. 149–154 (2012)Google Scholar
  98. 98.
    Nguyen, H.M.: Advanced Control Strategies for Wind Energy Conversion Systems, Ph.D. thesis, Idaho State University, USA (2013)Google Scholar
  99. 99.
    Nguyenn, H.M., Naidu, D.S.: Time scale anal-ysis and control of wind energy conversion systems. In: Proceedings of the 5th International Symposium on Resilient Control Systems, pp. 149–154 (2012)Google Scholar
  100. 100.
    Nie, L., Teng, Z.D.: Singular perturbation method for global stability of ratio-dependent predator-prey models with stage structure for the prey. Electron. J. Differ. Equ. 2013(86), 1–9 (2013)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Oloomi, H., Shafai, B.: Two-time-scale distributions and singular perturbations. Int. J. Control 77(11), 1040–1049 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Ott, C., Albu-Schaffer, A., Hirzinger, G.: Comparison of adaptive and nonadaptive tracking control laws for a flexible joint manipulator. IEEE/RSJ Int. Conf. Intell Robots Syst. 2, 2018–2024 (2002)CrossRefGoogle Scholar
  103. 103.
    Pang, C.K., Lewis, F.L., Ge, S.S., Guo, G.X., Chen, B.M., Lee, T.H.: Singular perturbation control for vibration rejection in HDDs using the PZT active suspension as fast subsystem observer. IEEE Trans. Industr. Electron. 54(3), 1375–1386 (2007)CrossRefGoogle Scholar
  104. 104.
    Park, No-Cheol, Yang, Hyun-Seok, Park, Hyung-Wug, Park, Young-Pil: Position/vibration control of two-degree-of-freedom arms having one flexible link with artificial pneumatic muscle actuators. Robotics Auton. Syst. 40(4), 239–253 (2002)MathSciNetCrossRefGoogle Scholar
  105. 105.
    Pekarek, S.D., Lemanski, M.T., Walters, E.A.: On the use of singular perturbations to neglect the dynamic saliency of synchronous machines. IEEE Trans. Energy Convers. 17(3), 385–391 (2002)CrossRefGoogle Scholar
  106. 106.
    Peng, S.T., Sheu, J.J., Chang, C.C.: A control scheme for automatic path tracking of vehicles subject to wheel slip constraint. Proc. Am. Control Conf. 1, 804–809 (2004)Google Scholar
  107. 107.
    Prochaska, M., Probst, F.A., Mathis, W.: Analysis of emitter-coupled multivibrators by singularly perturbed systems. Math. Comput. Model. Dyn. Syst. 13(6), 531–543 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Qi, Z.Q., Hu, G.D., Yang, Z.H., Zhang, F.E.: Flight guidance control using genetic algorithm combined with singular perturbation technique. Int. Conf. Mach. Learn. Cybern. 2, 1034–1038 (2003)Google Scholar
  109. 109.
    Qiao, Q.Q., Chen, W.C.: A near optimal midcourse guidance law for air-to-air missile. Appl. Mech. Mater. 336–338, 833–838 (2013)CrossRefGoogle Scholar
  110. 110.
    Ramnath, R.V.: Multiple Scales Theory and Aerospace Applications. AIAA, Reston (2010)CrossRefGoogle Scholar
  111. 111.
    Rasmussen, B., Alleyne, A., Shah, R.: Reduced order modeling of transcritical AC system dynamics using singular perturbation. Proc. Am. Control Conf. 3, 2264–2269 (2003)Google Scholar
  112. 112.
    Rattanakul, C., Lenbury, Y., Krishnamara, N., Wollkind, D.J.: Modeling of bone formation and resorption mediated by parathyroid hormone: response to estrogen/PTH therapy. Biosyst. 70, 55–72 (2003)CrossRefGoogle Scholar
  113. 113.
    Rawn, B.G., Lehn, P.W., Maggiore, M.: Toward controlled wind farm output: adjustable power filtering. In: IEEE Power Engineering Society General Meeting, pp. 1–6 (2006)Google Scholar
  114. 114.
    Rawn, B.G., Lehn, P.W., Maggiore, M.: Control methodology to mitigate the grid impact of wind turbines. IEEE Trans. Energ. Convers. 22(2), 431–438 (2007)CrossRefGoogle Scholar
  115. 115.
    Renezeder, H.C., Steindl, A., Troger, H.: On the dynamics of axially moving strings. Proc. Appl. Math. Mech. 4(1), 201–202 (2004)CrossRefGoogle Scholar
  116. 116.
    Riaza, R., Zufiria, P.J.: Differential-algebraic equations and singular perturbation methods in recurrent neural learning. Dyn. Syst. 18(1), 89–105 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Riva, M.D.: Stokes flow in a singularly perturbed exterior domain. Complex Variables Elliptic Equ. 58(2), 231–257 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Ruan, S.G., Xiao, D.M.: Stability of steady states and existence of travelling waves in a vector-disease model. In: Proceedings of the Royal Society of Edinburgh, pp. 991–1011 (2004)Google Scholar
  119. 119.
    Runge, J., Oswald, B.R.: Modelling of a controlled doubly fed induction machine for the use in offshore wind power plants. In: 39th International Universities Power, Engineering Conference, pp. 1155–1159 (2004)Google Scholar
  120. 120.
    Salmasi, H., Fotouhi, R., Nikiforuk, P.N.: On the stability of a friction compensation strategy for flexible-joint manipulators. Adv. Robot. 24(15), 2059–2086 (2010)CrossRefGoogle Scholar
  121. 121.
    Savva, N., Kalliadasis, S.: Droplet motion on inclined heterogeneous substrates. J. Fluid Mech. 725, 462–491 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Selisteanu, D., Petre, E., Roman, M., Bobasu, E.: Structural properties and reduced order modeling of a class of bioprocesses. In: Proceedings of the 2010 International Conference on Modeling, Identification and Control, pp. 88–93 (2010)Google Scholar
  123. 123.
    Shao, Z.Y., Zhang, X.D.: Intelligent control of flexible-joint manipulator based on singular perturbation. In: IEEE International Conference on Automation and Logistics, pp. 243–248 (2010)Google Scholar
  124. 124.
    Shen, H.S., Xiang, Y.: Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment. Compos. Part B Eng. 52, 311–322 (2013)CrossRefGoogle Scholar
  125. 125.
    Shim, K.H., Sawan, M.E.: Approximate controller design for singularly perturbed aircraft systems. Aircr. Eng. Aerosp. Technol. Int. J. 77(4), 311–316 (2005)CrossRefGoogle Scholar
  126. 126.
    Shirazi, F.A., Grigoriadis, K.M., Viassolo, B.: Wind turbine integrated structural and LPV control design for improved closed-loop performance. Int. J. Control 85(8), 1178–1196 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    Smith, W.R., Gramberg, H.J.J.: Mathematical modelling of moisture-induced panel deformation. J. Eng. Math. 43, 347–366 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Song, B.J., Castillo-Chavez, C., Aparicio, J.P.: Tuberculosis models with fast and slow dynamics: the role of close and casual contacts. Math. Biosci. 180(1–2), 187–205 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Sorchini, Z., Krein, P.T.: Formal derivation of direct torque control for induction motors using the singular perturbation method. In: IEEE 36th Power Electronics Specialists Conference, pp. 2422–2428 (2005)Google Scholar
  130. 130.
    Soto-Cota, A., Fridman, L.M., Loukianov, A.G., Canedo, J.M.: Power system singularly perturbed discontinuous control. In: Proceedings of the American Control Conference, vol. 3, pp. 2580–2585 (2004)Google Scholar
  131. 131.
    Soto-Cota, A., Loukianov, A.G., Canedo, J.M., Fridman, L.M.: Variable structure control of synchronous generator: singularly perturbed analysis. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 4, pp. 3513–3518 (2003)Google Scholar
  132. 132.
    Soto-Cota, A., Fridman, L.M., Loukianov, A.G., Canedo, J.M.: Variable structure control of synchronous generator: singularly perturbed analysis. Int. J. Control 79(1), 1–13 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Srivastava, R.S.: On the vorticity distribution over a normal diffracted shock for small and large bends. Shock Waves 23(5), 1–4 (2013)CrossRefGoogle Scholar
  134. 134.
    Stoica, A., Berbente, S., Condurache, A.: Optimal flight control system for the lateral motion of a fighter aircraft. Rev. Roum. des Sci. Tech., Serie de Mecani. Appl. 45, 277–293 (2002)Google Scholar
  135. 135.
    Subudhi, B., Morris, A.S.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robotics Auton. Syst. 41(4), 257–270 (2002)zbMATHCrossRefGoogle Scholar
  136. 136.
    Subudhi, B., Morris, A.S.: Singular perturbation approach to trajectory tracking of flexible robot with joint elasticity. Int. J. Syst. Sci. 34(3), 167–179 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Sun, M.J., Yan, G.G., Zhang, Y.J.: A design method of the complementary controller for multi-infeed hvdc transmission systems using singular perturbation theory. Adv. Mater. Res., pp. 766–770 (2013)Google Scholar
  138. 138.
    Taghirad, H.D., Khosravi, M.A.: Stability analysis and robust composite controller synthesis for flexible joint robots. IEEE/RSJ Int. Conf. Intell. Robots Syst. 3, 2073–2078 (2002)CrossRefGoogle Scholar
  139. 139.
    Touhami, O., Mezouar, A.E.K., Ibtiouen, R., Mekhtoub, S.: Sliding mode control and flux observer for a singularly perturbed model of an induction machine. IEEE Int. Conf. Ind. Technol. 1, 108–114 (2004)Google Scholar
  140. 140.
    Tsang, K.M., Wang, J.: Design of second order sliding mode controller for synchronous generators based on singular perturbation method. Int. Conf. Power Syst. Technol. 1, 333–338 (2002)CrossRefGoogle Scholar
  141. 141.
    Vakil, M., Fotouhi, R., Nikiforuk, P.N.: End-effector trajectory tracking of a flexible link manipulator using integral manifold concept. Int. J. Syst. Sci. 42(12), 2057–2069 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    Vazquez, R., Krstic, M.: Thermal convection loop control by continuous backstepping and singular perturbations. Proc. Am. Control Conf. 6, 3882–3887 (2005)Google Scholar
  143. 143.
    Vian, J.L., Moore, J.R.: Trajectory optimization with risk minimization for military aircraft. J. Guidance 12(3), 311–317 (1989)CrossRefGoogle Scholar
  144. 144.
    Waldmann, J.: Forced singular perturbations as theoretical background to a split-coordinate frame multirate strapdown terrestrial navigation algorithm. In: 4th International Conference on Control and Automation, pp. 28–32 (2003)Google Scholar
  145. 145.
    Wang, L.D., Cheng, S., Zhang, J.W., Hu, Y.: Control of a redundantly actuated power line inspection robot based on a singular perturbation model. In: IEEE International Conference on Robotics and Biomimetics, pp. 198–203 (2009)Google Scholar
  146. 146.
    Wang, Z.Y., Ghorbel, F.H.: Control of closed kinematic chains using a singularly perturbed dynamic model. In: 43rd IEEE Conference Decision and Control, vol. 1, 317–322 (2004)Google Scholar
  147. 147.
    Wang, Z.Y., Ghorbel, F.H.: Control of closed kinematic chains: a comparative study. In: Proceedings of the American Control Conference, pp. 2498–2503 (2006)Google Scholar
  148. 148.
    Wang, L.J., Mukaidani, H., Shen, X.M., Liu, X.Z.: Delay-dependent stability analysis for large-scale multiple-bottleneck systems using singular perturbation approach. In: IEEE Global Telecommunications Conference, pp. 1–5 (2008)Google Scholar
  149. 149.
    Wang, L.M., Sontag, E.D.: A remark on singular perturbations of strongly monotone systems. In: 45th IEEE Conference on Decision and Control, pp. 989–994 (2006)Google Scholar
  150. 150.
    Wang, Z.Y., Ghorbel, F.H., Dabney, J.B.: On the domain and error characterization in the singular perturbation modeling of closed kinematic chains. Proc. Am. Control Conf. 1, 493–498 (2004)Google Scholar
  151. 151.
    Wang, C., Lin, W., Le, X.: Modelling of a PMSG wind turbine with autonomous control. Math. Prob. Eng. 2014(1), 1–9 (2014)Google Scholar
  152. 152.
    Wilde, R.R., Kokotovic, P.V.: Stability of singularly perturbed systems and networks with parasitiecs. IEEE Trans. Autom. Control 17(4), 245–246 (1972)MathSciNetCrossRefGoogle Scholar
  153. 153.
    Winkelman, J.R., Chow, J.H., Allemong, J.J., et al.: Multi-time-scale analysis of a power system. Automatica 16(1) 35–43 (1980)Google Scholar
  154. 154.
    Xia, J.K., Xin, M.: Bifurcation analysis for power system voltage stability based on singular perturbation method. In: International Conference on Electrical Machines and Systems, pp. 1811–1814 (2007)Google Scholar
  155. 155.
    Xie, R., Wang, X.M., Li, Y.: Neural network adaptive inversion control law design for a supermaneuverable aircraft. In: The 4th IEEE Conference on Industrial Electronics and Applications, pp. 3434–3437 (2009)Google Scholar
  156. 156.
    Xin, H., Gan, D., Huang, M., Wang, K.: Estimating the stability region of singular perturbation power systems with saturation nonlinearities: an linear matrix inequality based method. IET Control Theory Appl. 4(3), 351–361 (2010)MathSciNetCrossRefGoogle Scholar
  157. 157.
    Yablonsky, G.S., Mareels, I.M.Y., Lazman, M.: The principle of critical simplification in chemical kinetics. Chem. Eng. Sci. 58(21), 4833–4842 (2003)CrossRefGoogle Scholar
  158. 158.
    Yan, F.J., Wang, J.M.: Control of diesel engine dual-loop EGR air-path systems by a singular perturbation method. Control Eng. Pract. 21(7), 981–988 (2013)CrossRefGoogle Scholar
  159. 159.
    Yao, S., Mei, S., Hua, G.W.: One novel variable-speed wind energy system based on pmsg and super sparse matrix converter. In: International Conference on Electrical Machines and Systems, pp. 2384–2389 (2008)Google Scholar
  160. 160.
    Yoshida, Z., Morrison, P.J.: Unfreezing casimir invariants: singular perturbations giving rise to forbidden instabilities, e-prints, March 2013. ArXiv:1303.0887
  161. 161.
    Zhang, Y., Nguyen, H., Naidu, D.S., Zou, Y., Cai, C.: Time scale analysis and synthesis for model predictive control. In: Proceedings of the WSEAS-NAUN 4th International Conference on Circuits, Systems, Control and Signals, pp. 27–32 (2013)Google Scholar
  162. 162.
    Zhang, J.M.: Existence of travelling waves in a modified vector-disease model. Appl. Math. Model. 33(2), 626–632 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Zhang, R.J., Chen, Y.B.: Dual-loop feedback control of servo motor systems using singular perturbation method. Proc. Am. Control Conf. 6, 4657–4662 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of Computer ScienceBrunel University LondonUxbridgeUK

Personalised recommendations