Advertisement

The Sensitivity-Shaping Problem for Singularly Perturbed Systems

  • Chenxiao CaiEmail author
  • Zidong Wang
  • Jing Xu
  • Yun Zou
Chapter
  • 534 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 78)

Abstract

In this chapter, a design technique is carried out by applying robustness criteria to obtain stability and satisfy some performances. A loop-shaping technique has been researched by selecting a suitable open-loop TF and then the robust controller is constructed. This chapter is arranged as follows: the basic definitions are presented in Sect. 6.1. The loop-shaping design procedure for SISO SPSs via using the finite frequency strategy is demonstrated in Sect. 6.2. Such method has been extended to be applied in MIMO SPSs in Sect. 6.3. Using observer-based controllers, the fault detection (FD) issue for SPSs based on finite frequency methods has been investigated in Sect. 6.4. Simulation examples are given respectively to show the validity and effectiveness of the design procedure.

Keywords

Fast Subsystem Finite Frequency Slow Subsystem Residual Output Fault Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chao, A., Athans, M.: Stability robustness to unstructured uncertainty for linear time invariant systems. In: Levine, W.S. (ed.) The Control Handbook. CRC Press and IEEE Press, Boca Raton (1996)Google Scholar
  2. 2.
    Chen, C.X., Wang, X.J., Niu, D.Z., Ren, X.Y., Qu, K.: A hierarchical fault detection method based on IS-SVM in integrated navigation system. Sens. Transducers 175(7), 111–116 (2014)Google Scholar
  3. 3.
    Dahleh, M.A.: \(L_1\) Robust control: theory, computation and design. In: Levine, W.S. (ed.) The Control Handbook. CRC Press and IEEE Press, Boca Raton (1996)Google Scholar
  4. 4.
    Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory. MacMillan Publishing Co, New York (1992)Google Scholar
  5. 5.
    Glielmo, L., Corless, M.: On output feedback control of singularly perturbed systems. Appl. Math. Comput. 217(3), 1053–1070 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hara, S., Iwasaki, T., Shiokata, D.: Robust PID control using generalized KYP synthesis: direct open-loop shaping in multiple frequency ranges. IEEE Control Syst. 26(1), 80–91 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Huang, Y., Cai, C., Zou, Y.: Finite frequency positive real control for singularly perturbed systems. Int. J. Control Autom. Syst. 9(2), 376–383 (2011)CrossRefGoogle Scholar
  8. 8.
    Iwasaki, T., Hara, S.: Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans. Autom. Control 50(1), 41–59 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Iwasaki, T., Hara, S., Fradkov, A.L.: Time domain interpretations of frequency domain inequalities on (semi) finite ranges. Syst. Control Lett. 57(7), 681–691 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Khail, H.K., Chen, F.C.: \(H_\infty \) control of two-time-scale systems. Proc. Am. Control Conf. 19, 35–42 (1992)Google Scholar
  11. 11.
    Li, T., Zhang, Y.: Fault detection and diagnosis for stochastic systems via output PDFs. J. Frankl. Inst. 384(6), 1140–1152 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Luse, D.W., Ball, J.A.: Frequency-scale decomposition of \(H_\infty \) disk problems. SIAM J. Control Optim. 27(4), 814–835 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mei, P., Cai, C., Zou, Y.: Robust fuzzy control of nonlinear singularly perturbed systems with parametric uncertainties. Int. J. Innov. Comput. 4(8), 2079–2086 (2008)Google Scholar
  14. 14.
    Mei, P., Cai, C., Zou, Y.: A generalized KYP lemma based approach for \(H_\infty \) control of singularly perturbed systems. Circuits Syst. Signal Process. 28(6), 945–957 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Oloomi, H.M., Sawan, M.E.: Suboptimal model-matching problem for two frequency scale transfer functions. In: Proceedings of the American Control Conference, pp. 2190–2191, Pittsburgh, PA (1989)Google Scholar
  16. 16.
    Pan, Z., Basar, T.: \(H_\infty \) optimal control for singularly perturbed systems Part I: Perfect state measurements. IEEE Trans. Autom. Control 29(2), 401–423 (1993)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Pan, Z., Basar, T.: \(H_\infty \) optimal control for singularly perturbed systems Part II: Imperfect state measurements. IEEE Trans. Autom. Control 39(2), 280–299 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rantzer, A.: On the Kalman-Yakubovich-Popov lemma. Syst. Control Lett. 28(1), 7–10 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sun, W., Khargonekar, P.P., Shim, D.: Robust control synthesis with general frequency domain specifications: static gain feedback case. Proc. Am. Control Conf. 5, 4613–4618 (2004)Google Scholar
  20. 20.
    Tan, W., Leung, T., Tu, Q.: \(H_\infty \) control for singularly perturbed systems. Automatica 34(2), 255–260 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Willems, J.C.: Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Autom. Control AC 16(6), 621–634 (1971)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, J., Lyu, M., Karimi, H.R., Zuo, J., Bo, Y.: Fault detection for network control systems with multiple communication delays and stochastic missing measurements. Math. Probl. Eng. Article ID 690461, 1–9 (2014)Google Scholar
  23. 23.
    Zhou, K., Doyle, J., Glover, K.: Robust and optimal control. Prentice-Hall, Upper Saddle River (1996)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of Computer ScienceBrunel University LondonUxbridgeUK

Personalised recommendations