Advertisement

Finite Frequency Positive Real Control for Singularly Perturbed Systems

  • Chenxiao CaiEmail author
  • Zidong Wang
  • Jing Xu
  • Yun Zou
Chapter
  • 547 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 78)

Abstract

With the development of high-performance mechatronics , the feedback control system is often required to exhibit some particular control system specifications such as high control bandwidth and FF disturbance suppression capability. Meanwhile, the integrated design of both mechanical plant and controller design is carried out to achieve performance specifications. In this chapter, a GKYP lemma-based algorithm is proposed for simultaneous finite frequency design of a mechanical SPS plant and controller through a convex separable parametrization. In Sect. 5.1, basic definitions and some related engineering background of passivity and positive real property are introduced. The design procedure using the classical slow-fast decomposition is represented in Sect. 5.2. To extend the results to nonstandard SPS, a descriptor-system method for SPSs are demonstrated in Sect. 5.3.

References

  1. 1.
    Dragan, V., Morozan, T., Shi, P.: Asymptotic properties of input-output operators norm associated with singularly perturbed systems with multiplicative white noise. SIAM J. Control Optim. 41(1), 141–163 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dragan, V., Mukaidani, H., Shi, P.: The linear quadratic regulator problem for a class of controlled systems modeled by singularly perturbed ito differential equations. SIAM J. Control Optim. 50(1), 448–470 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fridman, E.: Near-optimal \(H_\infty \) control of linear singularly perturbed systems. IEEE Trans. Autom. Control 41(2), 236–240 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Haddad, W.M., Chellaboina, V.S.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, Princeton (2008)zbMATHGoogle Scholar
  5. 5.
    Hara, S., Iwasaki, T.: Robust PID control using generalized KYP synthesis. IEEE Control Syst. Mag. 26(1), 80–91 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hill, D., Moylan, P.: Stability results for nonlinear feedback systems. Automatica 13(4), 377–382 (1977)CrossRefzbMATHGoogle Scholar
  7. 7.
    Iwasaki, T., Hara, S., Fradkov, A.L.: Time domain interpretations of frequency domain inequalities on (semi) finite ranges. Syst. Control Lett. 54(7), 681–691 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Iwasaki, T., Hara, S.: Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans. Autom. Control 50(1), 41–59 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khail, H.K., Chen, F.C.: \(H_\infty \) control of two-time-scale systems. Proc. Am. Control Conf. 19, 35–42 (1992)Google Scholar
  10. 10.
    Kokotovic, P.V., O’Malley, R.E., Sannuti, P.: Singular perturbations and order reduction in control theory-an overview. Automatica 12(2), 123–132 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kokotovic, P.V., Khalil, H.K., OReilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, New York (1986)Google Scholar
  12. 12.
    Luse, D.W., Ball, J.A.: Frequency-scale decomposition of \(H_\infty \) disk problems. SIAM J. Control Optim. 27(4), 814–835 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Luse, D.W., Khalil, H.K.: Frequency domain results for systems with slow and fast dynamics. IEEE Trans. Autom. Control AC–30(12), 1171–1179 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Naidu, D.S., Calise, A.J.: Singular perturbation methods and time scales in guidance and control of aerospace systems: a survey. AIAA J. Guid. Control Dyn. 24(6), 1057–1078 (2001)CrossRefGoogle Scholar
  15. 15.
    Oloomi, H.M., Sawan, M.E.: Suboptimal model-matching problem for two frequency scale transfer functions. In: Proceedings of the American Control Conference, pp. 2190–2191 (1989)Google Scholar
  16. 16.
    Pan, Z., Basar, T.: \(H_\infty \) optimal control for singularly perturbed systems Part I: perfect state measurements. In: Proceedings of American Control Conference, pp. 1850–1854 (1992)Google Scholar
  17. 17.
    Pan, Z., Basar, T.: \(H_\infty \) optimal control for singularly perturbed systems Part II: perfect state measurements. IEEE Trans. Autom. Control 39(2), 280–300 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rantzer, A.: On the Kalman–Yakubovich–Popov lemma. Syst. Control Lett. 28(1), 7–10 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shi, P., Shue, S., Agarwal, R.: Robust disturbance attenuation with stability for a class of uncertain singularly perturbed systems. Int. J. Control 70(6), 873–891 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shi, P., Dragan, V.: Asymptotic \(H_{\infty }\) control for singularly perturbed systems with parametric uncertainties. IEEE Trans. Autom. Control 44(9), 1738–1742 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sun, W., Khargonekar, P.P., Shim, D.: Solution to the positive real control problem for linear time-invariant systems. IEEE Trans. Autom. Control 39(10), 2034–2046 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sun, W., Khargonekar, P.P., Shim, D.: Robust control synthesis with general frequency domain specifications: static gain feedback case. Proc. Am. Control Conf. 5, 4613–4618 (2004)Google Scholar
  23. 23.
    van der Schaft, A.J.: \(L_2\)-Gain and Passivity in Nonlinear Control. Springer, New York (1999)Google Scholar
  24. 24.
    Verghese, G.C., Levy, B.C., Kailath, T.: A generalized state-space for singular systems: a survey. IEEE Trans. Autom. Control AC–26(4), 811–831 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Willems, J.C.: Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Autom. Control AC–16(6), 621–634 (1971)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Xu, S., Lam, J.: Robust Control and Filtering of Singular Systems. Springer, Berlin (2006)zbMATHGoogle Scholar
  27. 27.
    Yakubovich, V.A.: A frequency theorem for the case in which the state and control spaces are Hilbert spaces with an application to some problems in the synthesis of optimal controls.I. Sib. Math. J. 15(3), 457–476 (1974)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zames, G.: On the input-output stability of time-varying nonlinear feedback systems, part one: conditions derived using concepts of loop gain, conicity, and positivity. IEEE Trans. Autom. Control AC–11(2), 228–238 (1966)CrossRefGoogle Scholar
  29. 29.
    Zhong, N., Sun, M., Zou, Y.: Robust stability and stabilization for singularly perturbed control systems: method based on singular systems. Int. J. Innov. Comput. Appl. 4(7), 1761–1770 (2008)Google Scholar
  30. 30.
    Zhou, L., Lu, G.: Robust stability of singularly perturbed descriptor systems with nonlinear perturbation. IEEE Trans. Autom. Control 56(4), 858–863 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of Computer ScienceBrunel University LondonUxbridgeUK

Personalised recommendations