Finite Frequency \(H_\infty \) Control for Singularly Perturbed Systems

  • Chenxiao CaiEmail author
  • Zidong Wang
  • Jing Xu
  • Yun Zou
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 78)


In this chapter, we consider the finite requency \(H_\infty \) methodologies of SPSs based on a dual version of GKYP lemma approach, which is more suitable for feedback synthesis. Two different methods are mainly utilized, namely the classical slow-fast decomposition method and the descriptor-system method for SPSs. The classical slow-fast decomposition method aims at applying this dual GKYP lemma in slow and fast subsystems, respectively, to achieve the desired performance characteristics for the closed-loop SPSs.


External Disturbance State Feedback Controller Entire Frequency Range Fast Subsystem Output Feedback Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen, C.T.: Linear System Theory and Design. Holt Rinehart and Winston, New York (1984)Google Scholar
  2. 2.
    Dragan, V.: Asymptotic expansions for game-theoretic riccati equations and stabilization with disturbance attenuation for singularly perturbed systems. Syst. Control Lett. 20(6), 455–463 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dragan, V., Shi, P., Boukas, E.K.: Control of singularly perturbed system with markovian jump parameters: an \(H_\infty \) approach. Automatica 35(8), 1359–1378 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fridman, E.: Near-optimal \(H_\infty \) control of linear singularly perturbed systems. IEEE Trans. Autom. Control 41(2), 236–240 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fridman, E.: State-feedback \(H_\infty \) control of nonlinear singularly perturbed systems. Int. J. Robust Nonlinear Control 11(12), 1115–1125 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gong, C., Su, B.: Robust \(H_\infty \) filtering of convex polyhedral uncertain time-delay fuzzy systems. Int. J. Innov. Comput. Inf. Control 4(4), 793–802 (2008)Google Scholar
  7. 7.
    Hara, S., Iwasaki, T.: Robust PID control using generalized KYP synthesis. IEEE Control Syst. Mag. 26(1), 80–91 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Iwasaki, T., Hara, S.: Robust control synthesis with general frequency domain specifications: static gain feedback case. Proc. Am. Control Conf. 5, 4613–4618 (2004)Google Scholar
  9. 9.
    Iwasaki, T., Hara, S.: Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans. Autom. Control 50(1), 41–59 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Iwasaki, T., Hara, S.: Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma. Int. J. Robust Nonlinear Control 17(5–6), 415–434 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Iwasaki, T., Hara, S., Fradkov, A.L.: Time domain interpretations of frequency domain inequalities on finite ranges. Syst. Control Lett. 54(7), 681–691 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Khail, H.K., Chen, F.C.: \(H_\infty \) control of two-time-scale systems. Proc. Am. Control Conf. 19, 35–42 (1992)Google Scholar
  13. 13.
    Kokotovic, P.V., Khalil, H.K., OReilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, New York (1986)Google Scholar
  14. 14.
    Liang, C., Chen, B.: On the design of stabilizing controllers for singularly perturbed systems. IEEE Trans. Autom. Control 37(11), 1828–1834 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Luse, D.W.: Frequency domain results for systems with multiple time scales. IEEE Trans. Autom. Control 31(10), 918–924 (1986)CrossRefzbMATHGoogle Scholar
  16. 16.
    Luse, D.W., Ball, J.A.: Frequency-scale decomposition of \(H_\infty \) disk problems. SIAM J. Control Optim. 27(4), 814–835 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Luse, D.W., Khail, H.K.: Frequency domain results for systems with slow and fast dynamics. IEEE Trans. Autom. Control 30(12), 1171–1179 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Oloomi, H.M.: Nevanlinna-pick interpolation for two frequency scale systems. IEEE Trans. Autom. Control 40(1), 369–377 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Oloomi, H.M., Sawan, M.E.: Suboptimal model-matching problem for two frequency scale transfer functions. In: Proceedings of the American Control Conference, pp. 2190–2191 (1989)Google Scholar
  20. 20.
    Oloomi, H.M., Sawan, M.E.: \(H_\infty \) model matching problem for singularly perturbed systems. Automatica 32(3), 369–377 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pan, Z., Basar, T.: \(H_\infty \) optimal control for singularly perturbed systems part I: Perfect state measurements. Automatica 29(2), 401–423 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pan, Z., Basar, T.: \(H_\infty \) optimal control for singularly perturbed systems part ii: imperfect state measurements. IEEE Trans. Autom. Control 39(2), 280–299 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rantzer, A.: On the Kalman-Yakubovich-Popov lemma. Syst. Control Lett. 28(1), 7–10 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shen, T.L.: \(H_\infty \) Control Theory and Applications. Tinghua University Press, Beijing (1996)Google Scholar
  25. 25.
    Shi, P., Dragan, V.: Asymptotic \(H_\infty \) control of singularly perturbed system with parametric uncertainties. IEEE Trans. Autom. Control 44(9), 1738–1742 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tan, W., Leung, T., Tu, Q.: \(H_\infty \) control for singularly perturbed systems. Automatica 34, 255–260 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wang, Y., Sun, Z.: \(H_\infty \) control of networked control system via LMI approach. Int. J. Innov. Comput. Inf. Control 3(2), 343–352 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of Computer ScienceBrunel University LondonUxbridgeUK

Personalised recommendations