Advertisement

Singular Perturbation Methods and Time-Scale Techniques

  • Chenxiao CaiEmail author
  • Zidong Wang
  • Jing Xu
  • Yun Zou
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 78)

Abstract

For control engineering, typical tasks can generally be classified into three main categories: optimal regulation , tracking and guidance . To overcome the external disturbances, parameter variations and other uncertainties, control systems should possess a sufficient degree of robustness or insensitivity to extraneous effects.

Keywords

State Feedback Controller Slow Manifold Fast Subsystem Slow Subsystem Singular Perturbation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Avalos, G.G., Gallegos, N.B.: Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Comput. Modell. Dyn. Syst. 19(5), 483–503 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Berglund, N., Gentz, B.: Geometric singular perturbation theory for stochastic differential equations. J. Differ. Equ. 191(1), 1–54 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bidani, M., Djemai, M.: A multirate digital control via a discrete-time observer for non-linear singularly perturbed continuous-time systems. Int. J. Control 75(8), 591–613 (2002)Google Scholar
  4. 4.
    Bonfoh, A.: Dynamics of Hodgkin-Huxley systems revisited. Appl. Anal. 89(8), 1251–1269 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Borkar, V.S., Kumar, K.S.: Singular perturbations in risk-sensitive stochastic control. SIAM J. Control Optim. 48(6), 3675–3697 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cao, L., Schwartz, H.M.: Output feedback stabilization of linear systems with a singular perturbation model. Proc. Am. Control Conf. 2, 1627–1632 (2002)Google Scholar
  7. 7.
    Chen, W.H., Yuan, G., Zheng, W.X.: Robust stability of singularly perturbed impulsive systems under nonlinear perturbation. IEEE Trans. Autom. Control 58(1), 1–6 (2012)MathSciNetGoogle Scholar
  8. 8.
    Chen, W.H., Fu, W., Du, R., Lu, X.M.: Exponential stability of a class of linear time-varying singularly perturbed systems. In: Proceedings of the International Conference on Information Science and Technology, pp. 778–783 (2011)Google Scholar
  9. 9.
    Choi, H.L., Lim, J.T.: Gain scheduling control of nonlinear singularly perturbed time-varying systems with derivative information. Int. J. Syst. Sci. 36(6), 357–364 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Costa, O.L.V., Dufour, F.: Singular perturbation for the discounted continuous control of piecewise deterministic markov processes. In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 1436–1441 (2010)Google Scholar
  11. 11.
    Doan, T.S., Kalauch, A., Siegmund, S.: Exponential stability of linear time-invariant systems on time scales. Nonlinear Dyn. Syst. Theory 9(1), 37–50 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Erbe, L., Hassan, T.S., Peterson, A., Saker, S.H.: Oscillation criteria for half-linear delay dynamic equations on time scales. J. Math. Anal. Appl. 345(1), 176–185 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. M. Ginoux, J. L., Chua, L. O.: Canards from chuas circuit. Int. J. Bifur. Chaos Appl. Sci. Eng., 23(4), 1–13 (2013)Google Scholar
  14. 14.
    Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numerische mathematik 14(5), 403–420 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, PCh., Peng, C.K., Stanley, H.E.: Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. U.S.A. 99, 2466–2472 (2002)Google Scholar
  16. 16.
    Gong, F., Khorasani, K.: Fault diagnosis of linear singularly perturbed systems. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, pp. 2415–2420 (2005)Google Scholar
  17. 17.
    Gonzalez-A, G., N. Barrera-G. Quasy steady state model determination using bond graph for a singularly perturbed lti system. In: Proceedings of the 16th International Conference on Methods and Models in Automation and Robotics, pp. 194–199 (2011)Google Scholar
  18. 18.
    Guckenheimer, J., Hoffman, K., Weckesser, W.: The forced van der pol equation I: The slow flow and its bifurcations. SIAM J. Appl. Dyn. Syst. 2(1), 1–35 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Heldt, T., Chang, J.L., Chen, J.J.S., Verghese, G.C., Mark, R.G.: Cycle-averaged dynamics of a periodically driven, closed-loop circulation model. Control Eng. Pr. 13(9), 1163–1171 (2005)CrossRefGoogle Scholar
  20. 20.
    Holling, C.S.: Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol. Monogr. 62(4), 447–502 (1992)CrossRefGoogle Scholar
  21. 21.
    Huseynov, A.: On solutions of a nonlinear boundary value problem on time scales. Nonlinear Dyn. Syst. Theory 9(1), 69–76 (2009)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kao, R.R., Green, D.M., Johnson, J., Kiss, I.Z.: Disease dynamics over very different time-scales: foot-and-mouth disease and scrapie on the network of livestock movements in the UK. J. R. Soc. Interface 4(16), 907–916 (2007)CrossRefGoogle Scholar
  23. 23.
    Kokotović, P.V.: Applications of singular perturbation techniques to control problems. SIAM Rev. 26(4), 501–550 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Kokotovic, P.V., Haddad, A.H.: Controllability and time-optimal control of systems with slow and fast modes. IEEE Trans. Autom. Control 20(1), 111–113 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kokotović, P.V., O’Malley Jr., R.E., Sannuti, P.: Singular perturbations and order reduction in control theory-an overview. Automatica 12(2), 123–132 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kokotovic, P.V., Khalil, H.K., OReilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, New York (1986)Google Scholar
  27. 27.
    Krishnan, H., McClamroch, N.H.: On the connection between nonlinear differential-algebraic equations and singularly perturbed systems in nonstandard form. IEEE Trans. Autom. Control 39(5), 1079–1084 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lee, K., Shim, K.H., Sawan, M.E.: Unified modeling for singular perturbed systems by delta operator: Pole assignment case. In: Kim, Tag (ed.) Artificial Intelligence and Simulation, vol. 3397, pp. 24–32. Springer, Berlin, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Lin-Chen, Y.Y., Goodall, D.P.: Stabilizing feedbacks for imperfectly known, singularly perturbed nonlinear systems with discrete and distributed delays. Int. J. Syst. Sci. 35(15), 869–887 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Li, J., Lu, K., Bates, P.: Normally hyperbolic invariant manifolds for random dynamical systems: Part I-persistence. Trans. Am. Math. Soc. 365(11), 5933–5966 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Luse, D.W., Khalil, H.: Frequency domain results for systems with slow and fast dynamics. IEEE Trans. Autom. Control 30(12), 1171–1179 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Luse, D.W., Ball, J.A.: Frequency-scale decomposition of \(H_\infty \) disk problems. SIAM J. Control Optim. 27(4), 814–835 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    McClamroch, N.H., Krishnan, H.: Nonstandard singularly perturbed control systems and differential-algebraic equations. Int. J. Control 55(2), 1239–1253 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Meyer-Baese, A., Pilyugin, S.S., Chen, Y.: Global exponential stability of competitive neural networks with different time scales. IEEE Trans. Neural Netw. 14(3), 716–719 (2003)CrossRefGoogle Scholar
  35. 35.
    Naidu, D.S.: Singular Perturbation Methodology in Control Systems. IEE Control Engineering Series, vol. 34. Peter Peregrinus Limited, Stevenage Herts, UK (1988)Google Scholar
  36. 36.
    Naidu, D.S.: Singular perturbations and time scales in control theory and applications: overview. Dyn. Contin. Discr. Impuls. Syst. (DCDIS) J. 9(2), 233–278 (2002)Google Scholar
  37. 37.
    Naidu, D.S.: Singular perturbations and time scales in control theory and applications: overview. Dyn. Contin. Discret. Impuls. Syst. J. 9(2), 233–278 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Nakayama, Y.: Holographic interpretation of renormalization group approach to singular perturbations in non-linear differential equations. Phys. Rev. D 88(10), 1845–1858 (2013)CrossRefGoogle Scholar
  39. 39.
    Oloomi, H., Shafai, B.: Realization theory for two-time-scale distributions through approximation of markov parameters. Int. J. Syst. Sci. 39(2), 127–138 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Park, K.S., Lim, J.T.: Time-scale separation of nonlinear singularly perturbed discrete systems. In: Proceedings of the 2010 International Conference on Control Automation and Systems, pp. 892–895 (2010)Google Scholar
  41. 41.
    Potzsche, C.: Slow and fast variables in non-autonomous difference equations. J. Differ. Equ. Appl. 9(5), 473–487 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Prljaca, N., Gajic, Z.: General transformation for block diagonalization of multitime-scale singularly perturbed linear systems. IEEE Trans. Autom. Control 53(5), 1303–1305 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Sancho, S., Suarez, A., Chuan, J.: General envelope-transient formulation of phase-locked loops using three time scales. IEEE Trans. Microwave Theory Tech. 52(4), 1310–1320 (2004)CrossRefGoogle Scholar
  44. 44.
    Sanfelice, R.G., Teel, A.R.: On singular perturbations due to fast actuators in hybrid control systems. Automatica 47(4), 692–701 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Sedghi, B., Srinivasan, B., Longchamp, R.: Control of hybrid systems via dehybridization. Proc. Am. Control Confer. 1, 692–697 (2002)Google Scholar
  46. 46.
    Tikhonov, A.N., Vasil’eva, A.B., Sveshnikov, A.G.: Differential Equations. Springer, Berlin (1980)zbMATHGoogle Scholar
  47. 47.
    Wang, W., Teel, A.R., Nesic, D.: Averaging tools for singularly perturbed hybrid systems. In: Australian Control Conference, pp. 88–93 (2011)Google Scholar
  48. 48.
    Wang, W., Teel, A.R., Nesic, D.: Analysis for a class of singularly perturbed hybrid systems via averaging. Automatica 48(6), 1057–1068 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Wiley-Interscience, New York, NY, 1965. Unabridged and unaltered publication by Dover Publications, Inc., New York, NY, in 1987 of the corrected and slightly enlarged publication by Robert E. Krieger Publishing Company, Huntington, NY, in 1976Google Scholar
  50. 50.
    Widowati, R. Bambang, R. Saragih, and S.M. Nababan. Model reduction for unstable LPV systems based on coprimend factorizations and singular perturbation. In: Proceedings of the 5th Asian Control Conference, vol. 2, pp. 963–970 (2004)Google Scholar
  51. 51.
    Yang, X.J., Zhu, J.J.: A generalization of chang transformation for linear time-varying systems. In: Proceedings of the 49th IEEE Conference on Decision and Control, pp. 6863–6869 (2010)Google Scholar
  52. 52.
    Yin, G., Zhang, J.F.: Hybrid singular systems of differential equations. Sci. China Ser. F: Inform. Sci. 45(4), 241–258 (2002)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Yin, G., Zhang, H.Q.: Discrete-time markov chains with two-time scales and a countable state space: limit results and queueing applications. Stochastics: Int. J. Prob. Stoch. Process, 80(4), 339–369 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of Computer ScienceBrunel University LondonUxbridgeUK

Personalised recommendations