Skip to main content

Evolutionary Algorithms

  • Chapter
  • First Online:
Book cover Metaheuristics

Abstract

The biological evolution generated extremely complex autonomous living beings which can solve extraordinarily difficult problems, such as the continuous adaptation to complex, uncertain environments and in perpetual transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://scholar.google.com/scholar?q=genetic+algorithms.

  2. 2.

    The Hamming distance is the number of different bits between two bit strings of the same length.

  3. 3.

    In (1 + 1)-\(\mathrm{{ES}}\): the population is composed of only one parent individual, and this generates only one offspring; the best of both is preserved for the next generation.

  4. 4.

    Possibly with a column permutation of the matrix \(\mathbf R\) and the corresponding diagonal coefficients in \(\mathbf S\).

References

  1. Abdelmalek, W., Ben Hamida, S., Abid, F.: Selecting the best forecasting-implied volatility model using genetic programming. Journal of Applied Mathematics and Decision Sciences 2009 (2009). Article ID 179230

    Google Scholar 

  2. Abid, F., Abdelmalek, W., Ben Hamida, S.: Dynamic hedging using generated genetic programming implied volatility models. In: S. Ventura (ed.) Genetic Programming: New Approaches and Successful Applications, Chap. 7, pp. 141–172. InTech (2012). doi:10.5772/48148

    Google Scholar 

  3. Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer (1987)

    Google Scholar 

  4. Angeline, P.J.: Two self-adaptive crossover operators for genetic programming. In: P.J. Angeline, K.E. Kinnear, Jr. (eds.) Advances in Genetic Programming 2, Chap. 5, pp. 89–110. MIT Press (1996)

    Google Scholar 

  5. Baeck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing (2000)

    Google Scholar 

  6. Baeck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 2: Advanced Algorithms and Operators. Institute of Physics Publishing (2000)

    Google Scholar 

  7. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: J.J. Grefenstette (ed.) Proceedings of the 2nd International Conference on Genetic Algorithms, pp. 14–21 (1987)

    Google Scholar 

  8. Beyer, H., Schwefel, H.: Evolution strategies—a comprehensive introduction. Natural Computing 1 (1), 3–52 (2002)

    Google Scholar 

  9. Beyer, H.G.: The Theory of Evolution Strategies, Natural Computing Series. Springer (2001)

    Google Scholar 

  10. Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of Political Economy 81 (3), 637–654 (1973)

    Google Scholar 

  11. Cai, W., Pacheco-Vega, A., Sen, M., Yang, K.T.: Heat transfer correlations by symbolic regression. International Journal of Heat and Mass Transfer 49 (23–24), 4352–4359 (2006). doi:10.1016/j.ijheatmasstransfer.2006.04.029

    Google Scholar 

  12. Chen, Y., Mabu, S., Shimada, K., Hirasawa, K.: A genetic network programming with learning approach for enhanced stock trading model. Expert Systems with Applications 36(10), 12,537–12,546 (2009). doi:10.1016/j.eswa.2009.05.054

    Google Scholar 

  13. Cheung, C., Valdes, J.J., Li, M.: Use of evolutionary computation techniques for exploration and prediction of helicopter loads. In: X. Li (ed.) Proceedings of the 2012 IEEE Congress on Evolutionary Computation, pp. 1130–1137. Brisbane, Australia (2012). doi:10.1109/CEC.2012.6252905

  14. Chidambaran, N.K., Triqueros, J., Lee, C.W.J.: Option pricing via genetic programming. In: S.H. Chen (ed.) Evolutionary Computation in Economics and Finance. Studies in Fuzziness and Soft Computing, vol. 100, Chap. 20, pp. 383–398. Physica Verlag (2002)

    Google Scholar 

  15. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: In J. J. Grefenstette (ed.) Proceedings of the \(1{st}\) International Conference on Genetic Algorithms, pp. 183–187 (1985)

    Google Scholar 

  16. Darwin, C.: On The Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. Murray, London (1859)

    Google Scholar 

  17. Davis, L.: Handbook of Genetic Algorithms, p. 80. Van Nostrand Reinhold (1991)

    Google Scholar 

  18. De Jong, K.A., Sarma, J.: Generation gaps revisited. In: L.D. Whitley (ed.) Foundations of Genetic Algorithms 2, pp. 19–28. Morgan Kaufmann (1993)

    Google Scholar 

  19. De La Maza, M., Tidor, B.: An analysis of selection procedures with particular attention paid to proportional and Boltzmann selection. In: S. Forrest (ed.) Proceedings of the 5th International Conference on Genetic Algorithms, pp. 124–131. Morgan Kaufmann (1993)

    Google Scholar 

  20. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer (2003).

    Google Scholar 

  21. Eiben, A.E., van Kemenade, C.H.M., Kok, J.N.: Orgy in the computer: Multi-parent reproduction in genetic algorithms. In: F. Moran, A. Moreno, J. Merelo, P. Chacon (eds.) Proceedings of the 3rd European Conference on Artificial Life. Lecture Notes in Artificial Intelligence, vol. 929, pp. 934–945. Springer (1995)

    Google Scholar 

  22. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: L.D. Whitley (ed.), pp. 187–202. Morgan Kaufmann (1992)

    Google Scholar 

  23. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artifical Intelligence through Simulated Evolution. Wiley (1966)

    Google Scholar 

  24. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Applied Mathematics 42(2–3), 177–201 (1993)

    Google Scholar 

  25. Garcia, B., Aler, R., Ledezma, A., Sanchis, A.: Protein–protein functional association prediction using genetic programming. In: M. Keijzer, G. Antoniol, C.B. Congdon, K. Deb, B. Doerr, N. Hansen, J.H. Holmes, G.S. Hornby, D. Howard, J. Kennedy, S. Kumar, F.G. Lobo, J.F. Miller, J. Moore, F. Neumann, M. Pelikan, J. Pollack, K. Sastry, K. Stanley, A. Stoica, E.G. Talbi, I. Wegener (eds.) GECCO’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 347–348. ACM, Atlanta, GA (2008). doi:10.1145/1389095.1389156

  26. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  27. Goldberg, D.E., Deb, K.: A comparison of selection schemes used in genetic algorithms. In: G. Rawlins (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann (1991)

    Google Scholar 

  28. Gustafson, S., Burke, E.K., Krasnogor, N.: On improving genetic programming for symbolic regression. In: D. Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, T.K. Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter, J. Willies, J.J.M. Guervos, E. Eberbach, B. McKay, A. Channon, A. Tiwari, L.G. Volkert, D. Ashlock, M. Schoenauer (eds.) Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 912–919. IEEE Press (2005). doi:10.1109/CEC.2005.1554780

  29. Hamida, S.B., Abdelmalek, W., Abid, F.: Applying dynamic training-subset selection methods using genetic programming for forecasting implied volatility. Computational Intelligence (2014). doi:10.1111/coin.12057

    Google Scholar 

  30. Hansen, N.: The CMA evolution strategy: A comparing review. In: J. Lozano, P. Larraaga, I. Inza, E. Bengoetxea (eds.) Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer (2006). doi:10.1007/3-540-32494-1_4

  31. Hartl, D.L., Clark, A.G.: Principles of Population Genetics, 4th edition. Sinauer Associates (2006)

    Google Scholar 

  32. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edition. MIT Press (1992)

    Google Scholar 

  33. Kaboudan, M.A.: Genetic programming prediction of stock prices. Computational Economics 16(3), 207–236 (2000). doi:10.1023/A:1008768404046

    Google Scholar 

  34. Keijzer, M.: Scaled symbolic regression. Genetic Programming and Evolvable Machines 5(3), 259–269 (2004). doi:10.1023/B:GENP.0000030195.77571.f9

    Google Scholar 

  35. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992)

    Google Scholar 

  36. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press (1994)

    Google Scholar 

  37. Langdon, W.: Size fair and homologous tree crossovers for tree genetic programming. Genetic Programming and Evolvable Machines 1(1–2), 95–119 (2000). doi:10.1023/A:1010024515191

    Google Scholar 

  38. Lew, T.L., Spencer, A.B., Scarpa, F., Worden, K., Rutherford, A., Hemez, F.: Identification of response surface models using genetic programming. Mechanical Systems and Signal Processing 20(8), 1819–1831 (2006). doi:10.1016/j.ymssp.2005.12.003

    Google Scholar 

  39. Mathias, K., Whitley, D.: Genetic operators, the fitness landscape and the traveling salesman problem. In: R. Manner, B. Manderick (eds.) Parallel Problem Solving from Nature, 2, pp. 221–230. Elsevier Science (1992)

    Google Scholar 

  40. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, revised 3rd edition. Springer (1996)

    Google Scholar 

  41. Nomura, T., Shimohara, K.: An analysis of two-parent recombinations for real-valued chromosomes in an infinite population. Evolutionary Computation 9(3), 283–308 (2001)

    Article  Google Scholar 

  42. Nordin, P.: A compiling genetic programming system that directly manipulates the machine code. In: K.E. Kinnear, Jr. (ed.) Advances in Genetic Programming, Chap. 14, pp. 311–331. MIT Press (1994)

    Google Scholar 

  43. Oakley, H.: Two scientific applications of genetic programming: Stack filters and non-linear equation fitting to chaotic data. In: K.E. Kinnear, Jr. (ed.) Advances in Genetic Programming, Chap. 17, pp. 369–389. MIT Press (1994)

    Google Scholar 

  44. Radcliffe, N.: Genetic neural networks on MIMD computers. Ph.D. thesis, University of Edinburgh (1990)

    Google Scholar 

  45. Rechenberg, I.: Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment Library Translation (1965)

    Google Scholar 

  46. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

    Google Scholar 

  47. Rogers, A., Prügel-Bennett, A.: Genetic drift in genetic algorithm selection schemes. IEEE Transactions on Evolutionary Computation 3(4), 298–303 (1999)

    Article  Google Scholar 

  48. Rudolph, G.: On correlated mutations in evolution strategies. In: R. Manner, B. Manderick (eds.) Parallel Problem Solving from Nature, pp. 105–114. Elsevier (1992)

    Google Scholar 

  49. Ryan, C., Collins, J., Collins, J., O’Neill, M.: Grammatical evolution: Evolving programs for an arbitrary language. In: Proceedings of the First European Workshop on Genetic Programming. Lecture Notes in Computer Science, vol. 1391, pp. 83–95. Springer-Verlag (1998)

    Google Scholar 

  50. Schoenauer, M., Lamy, B., Jouve, F.: Identification of mechanical behaviour by genetic programming. Part II: Energy formulation. Technical report, Ecole Polytechnique, 91128 Palaiseau, France (1995)

    Google Scholar 

  51. Schoenauer, M., Sebag, M., Jouve, F., Lamy, B., Maitournam, H.: Evolutionary identification of macro-mechanical models. In: P.J. Angeline, K.E. Kinnear, Jr. (eds.) Advances in Genetic Programming 2, Chap. 23, pp. 467–488. MIT Press (1996)

    Google Scholar 

  52. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley (1981)

    Google Scholar 

  53. Stadler, P.F.: Fitness landscapes. In: M. Lässig, A. Valleriani (eds.) Biological Evolution and Statistical Physics, pp. 183–204. Springer (2002)

    Google Scholar 

  54. Teller, A., Veloso, M.M.: PADO: Learning tree structured algorithms for orchestration into an object recognition system. Technical Report CMU-CS-95-101, Carnegie-Mellon University, Pittsburgh, PA (1995)

    Google Scholar 

  55. Wasiewicz, P., Mulawka, J.J.: Molecular genetic programming. Soft Computing—A Fusion of Foundations, Methodologies and Applications 2(5), 106–113 (2001)

    Google Scholar 

  56. Wright, S.: The roles of mutation, inbreeding, crossbreeeding and selection in evolution. In: D.F. Jones (ed.) Proceedings of the Sixth International Congress on Genetics, pp. 356–366 (1932)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Petrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petrowski, A., Ben Hamida, S. (2016). Evolutionary Algorithms. In: Siarry, P. (eds) Metaheuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-45403-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45403-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45401-6

  • Online ISBN: 978-3-319-45403-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics