Skip to main content

Applications to Air Traffic Management

  • 1816 Accesses

Abstract

Air traffic management (ATM) is an endless source of challenging optimization problems. Before discussing applications of metaheuristics to these problems, let us describe an ATM system in a few words, so that readers who are not familiar with such systems can understand the problems being addressed in this chapter. Between the moment passengers board an aircraft and the moment they arrive at their destination, a flight goes through several phases: push back at the gate, taxiing between the gate and the runway threshold, takeoff and initial climb following a Standard instrument departure (SID) procedure, cruise, final descent following standard terminal arrival route (STAR), landing on the runway, and taxiing to the gate. During each phase, the flight is handled by several air traffic control organizations: airport ground control, approach and terminal control, en-route control. These control organizations provide services that ensure safe and efficient conduct of flights, from departure to arrival.

Keywords

  • Genetic Algorithm
  • Particle Swarm Optimization
  • Voronoi Diagram
  • Route Network
  • Flight Level

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-45403-0_16
  • Chapter length: 46 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-45403-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2
Fig. 16.3
Fig. 16.4
Fig. 16.5
Fig. 16.6
Fig. 16.7
Fig. 16.8
Fig. 16.9
Fig. 16.10
Fig. 16.11
Fig. 16.12
Fig. 16.13
Fig. 16.14
Fig. 16.15
Fig. 16.16
Fig. 16.17
Fig. 16.18
Fig. 16.19
Fig. 16.20
Fig. 16.21
Fig. 16.22
Fig. 16.23
Fig. 16.24
Fig. 16.25
Fig. 16.26
Fig. 16.27
Fig. 16.28
Fig. 16.29
Fig. 16.30
Fig. 16.31
Fig. 16.32
Fig. 16.33
Fig. 16.34
Fig. 16.35
Fig. 16.36

Notes

  1. 1.

    The waypoints are considered here as the nodes of the air route network. Note that a dual representation, where route segments are nodes and waypoints are edges, is also possible.

  2. 2.

    This quantification of conflicts can be done, for example, using the number of conflicts at the crossing point weighted by the difficulty of each conflict.

  3. 3.

    A functional airspace block is a set of sectors in which several teams of controllers are qualified. Airspace blocks are independently managed by these different teams, which work in relays with one another. Several sectors in the same airspace block can be merged and controlled by the same pair of controllers. However, two sectors from different airspace blocks cannot be merged.

  4. 4.

    Functional Airspace Block Central Europe.

  5. 5.

    Central Flow Management Unit.

  6. 6.

    Future ATM Concepts Evaluation Tool.

  7. 7.

    National Aeronautics and Space Administration.

  8. 8.

    Two aircraft are conflicting if the horizontal distance between them is less than 5 nautical miles and the vertical distance is less than 1000 feet.

References

  1. van den Akker, J., Van Kemenade, C., Kok, J.: Evolutionary 3D-Air Traffic Flow Management. Citeseer (1998)

    Google Scholar 

  2. Allignol, C.: Planification de trajectoires pour l’optimisation du trafic aérien. Ph.D. thesis, INPT (2011)

    Google Scholar 

  3. Allignol, C., Barnier, N., Durand, N., Alliot, J.M.: A new framework for solving en-route conflicts. In: 10th USA/Europe Air Traffic Management Research and Development Seminar (2013)

    Google Scholar 

  4. Alliot, J., Bosc, J., Durand, N., Maugis, L.: CATS: A complete air traffic simulator. In: 16th DASC (1997)

    Google Scholar 

  5. Alliot, J.M., Gruber, H., Schoenauer, M.: Genetic algorithms for solving ATC conflicts. In: Proceedings of the Ninth Conference on Artificial Intelligence Application. IEEE (1992)

    Google Scholar 

  6. Barnier, N.: Application de la programmation par contraintes à des problèmes de gestion du trafic aérien. Ph.D. thesis, INPT (2002)

    Google Scholar 

  7. Barnier, N., Brisset, P.: Slot allocation in air traffic flow management. In: PACLP’2000 (2000)

    Google Scholar 

  8. Barnier, N., Brisset, P.: Graph coloring for air traffic flow management. In: CPAIOR’02: Fourth International Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimisation Problems, Le Croisic, France, pp. 133–147 (2002)

    Google Scholar 

  9. Bertsimas, D., Lulli, G., Odoni, A.: The air traffic flow management problem: An integer optimization approach. In: IPCO, pp. 34–46 (2008)

    Google Scholar 

  10. Bertsimas, D., Patterson, S.S.: The air traffic flow management problem with enroute capacities. Operations Research 46, 406–420 (1998)

    Google Scholar 

  11. Bichot, C.E.: Élaboration d’une nouvelle métaheuristique pour le partitionnement de graphe : la méthode de fusion-fission. Application au découpage de l’espace aérien. Ph.D. thesis, INPT (2007)

    Google Scholar 

  12. Bichot, C.E., Alliot, J.M., Durand, N., Brisset, P.: Optimisation par fusion et fission. Application au problème du découpage aérien européen. Journal Européen des Systèmes Automatisés 38(9–10), 1141–1173 (2004)

    Google Scholar 

  13. Bichot, C.E., Durand, N.: A tool to design functional airspace blocks. In: 7th USA/Europe Air Traffic Management Research and Development Seminar (2007)

    Google Scholar 

  14. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1996)

    Google Scholar 

  15. Blum, C., Socha, K.: Training feed-forward neural networks with ant colony optimization: An application to pattern classification. In: Fifth International Conference on Hybrid Intelligent Systems (2005)

    Google Scholar 

  16. Cai, K., Zhang, J., Zhou, C., Cao, X., Tang, K.: Using computational intelligence for large scale air route networks design. Applied Soft Computing 12(9), 2790–2800 (2012)

    Google Scholar 

  17. Cheng, V., Crawford, L., Menon, P.: Air traffic control using genetic search techniques. In: 1999 IEEE International Conference on Control Applications, Hawaii, August 22–27 (1999)

    Google Scholar 

  18. Deau, R.: Optimisation des séquences de pistes et du trafic au sol sur les grands aéroports. Ph.D. thesis, INPT (2010)

    Google Scholar 

  19. Deau, R., Gotteland, J.B., Durand, N.: Airport surface management and runways scheduling. In: 8th USA/Europe Air Traffic Management Research and Development Seminar (2009)

    Google Scholar 

  20. Delahaye, D.: Optimisation de la sectorisation de l’espace aérien par algorithmes génétiques. Ph.D. thesis, ENSAE (1995)

    Google Scholar 

  21. Delahaye, D., Alliot, J.M., Schoenauer, M., Farges, J.L.: Genetic algorithms for partitioning airspace. In: Proceedings of the Tenth Conference on Artificial Intelligence Application. IEEE (1994)

    Google Scholar 

  22. Delahaye, D., Alliot, J.M., Schoenauer, M., Farges, J.L.: Genetic algorithms for automatic regroupment of air traffic control sectors. In: Evolutionary Programming 95 (1995)

    Google Scholar 

  23. Delahaye, D., Odoni, A.: Airspace congestion smoothing by stochastic optimization. In: Evolutionary Programming 97 (1997)

    Google Scholar 

  24. Delahaye, D., Puechmorel, S.: 3D airspace sectoring by evolutionary computation: Real-world applications. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO ’06, pp. 1637–1644. ACM, New York (2006). doi:10.1145/1143997.1144267. URL http://doi.acm.org/10.1145/1143997.1144267

  25. Delahaye, D., Puechmorel, S.: 3D airspace design by evolutionary computation. In: Digital Avionics Systems Conference, 2008. DASC 2008, pp. 3.B.6-1–3.B.6-13. IEEE (2008). doi:10.1109/DASC.2008.4702803

  26. Delahaye, D., Schoenauer, M., Alliot, J.M.: Airspace sectoring by evolutionary computation. In: IEEE International Congress on Evolutionary Computation (1998)

    Google Scholar 

  27. Durand, N.: Optimisation de trajectoires pour la résolution de conflits en route. Ph.D. thesis, ENSEEIHT, Institut National Polytechnique de Toulouse (1996)

    Google Scholar 

  28. Durand, N.: Algorithmes Génétiques et autres méthodes d’optimisationappliqués ‘a la gestion de trafic aérien. Institut National Polytechnique de Toulouse (2004). Thse d’habilitation

    Google Scholar 

  29. Durand, N., Allignol, C., Barnier, N.: A ground holding model for aircraft deconfliction. In: 29th DASC (2010)

    Google Scholar 

  30. Durand, N., Alliot, J.M.: Optimal resolution of en route conflicts. In: Séminaire Europe/USA, Saclay, June 1997 (1997)

    Google Scholar 

  31. Durand, N., Alliot, J.M.: Genetic crossover operator for partially separable functions. In: Proceedings of the Third Annual Genetic Programming Conference (1998)

    Google Scholar 

  32. Durand, N., Alliot, J.M.: Ant colony optimization for air traffic conflict resolution. In: 8th USA/Europe Air Traffic Management Research and Development Seminar (2009)

    Google Scholar 

  33. Durand, N., Alliot, J.M., Chansou, O.: An optimizing conflict solver for ATC. Air Traffic Control (ATC) Quarterly (1995)

    Google Scholar 

  34. Durand, N., Alliot, J.M., Medioni, F.: Neural nets trained by genetic algorithms for collision avoidance. In: Applied Artificial Intelligence, Vol. 13, Number 3 (2000)

    Google Scholar 

  35. Durand, N., Alliot, J.M., Noailles, J.: Algorithmes genetiques: un croisement pour les problemes partiellement separables. In: Proceedings of the Journees Evolution Artificielle Francophones. EAF (1994)

    Google Scholar 

  36. Durand, N., Alliot, J.M., Noailles, J.: Automatic aircraft conflict resolution using genetic algorithms. In: Proceedings of the Symposium on Applied Computing, Philadelphia. ACM (1996)

    Google Scholar 

  37. Durand, N., Alliot, J.M., Noailles, J.: Collision avoidance using neural networks learned by genetic algorithms. In: Ninth International Conference on Industrial & Engineering (IEA-AEI 96), Nagoya, Japan (1996)

    Google Scholar 

  38. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer (2003)

    Google Scholar 

  39. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Computing in Euclidean Geometry (1995)

    Google Scholar 

  40. Fu, A., Lei, X., Xiao, X.: The aircraft departure scheduling based on particle swarm optimization combined with seamulated annealing algorithm. In: 2008 IEEE World Congress on Computational Intelligence, Hong Kong, June 1–6 (2008)

    Google Scholar 

  41. García, J., Berlanga, A., Molina, J.M., Casar, J.R.: Optimization of airport ground operations integrating genetic and dynamic flow management algorithms. AI Communications 18(2), 143–164 (2005)

    Google Scholar 

  42. Gianazza, D.: Optimisation des flux de trafic aérien. Ph.D. thesis, INPT (2004)

    Google Scholar 

  43. Gianazza, D.: Algorithme évolutionnaire et a* pour la séparation en 3d des flux de trafic aérien. Journal Européen des Systèmes Automatisés, 38(9), 10/2004, Special Issue “Métaheuristiques pour l’optimisation difficile” (2005)

    Google Scholar 

  44. Gianazza, D.: Smoothed traffic complexity metrics for airspace configuration schedules. In: Proceedings of the 3rd International Conference on Research in Air Transportation. ICRAT (2008)

    Google Scholar 

  45. Gianazza, D.: Forecasting workload and airspace configuration with neural networks and tree search methods. Submitted to Artificial Intelligence Journal (2010)

    Google Scholar 

  46. Gianazza, D., Allignol, C., Saporito, N.: An efficient airspace configuration forecast. In: Proceedings of the 8th USA/Europe Air Traffic Management R & D Seminar (2009)

    Google Scholar 

  47. Gianazza, D., Alliot, J.M.: Optimal combinations of air traffic control sectors using classical and stochastic methods. In: 2002 International Conference on Artificial Intelligence, IC-AI’02, Las Vegas (2002)

    Google Scholar 

  48. Gianazza, D., Alliot, J.M.: Optimization of air traffic control sector configurations using tree search methods and genetic algorithms. In: Digital Avionics Systems Conference 2002 (2002)

    Google Scholar 

  49. Gianazza, D., Durand, N.: Separating air traffic flows by allocating 3D-trajectories. In: 23rd DASC (2004)

    Google Scholar 

  50. Gianazza, D., Durand, N.: Assessment of the 3D-separation of air traffic flows. In: 6th USA/Europe Seminar on Air Traffic Management Research and Development (2005)

    Google Scholar 

  51. Gianazza, D., Durand, N., Archambault, N.: Allocating 3D trajectories to air traffic flows using a* and genetic algorithms. In: CIMCA04 (2004)

    Google Scholar 

  52. Gianazza, D., Guittet, K.: Evaluation of air traffic complexity metrics using neural networks and sector status. In: Proceedings of the 2nd International Conference on Research in Air Transportation. ICRAT (2006)

    Google Scholar 

  53. Gianazza, D., Guittet, K.: Selection and evaluation of air traffic complexity metrics. In: Proceedings of the 25th Digital Avionics Systems Conference, DASC (2006)

    Google Scholar 

  54. Goldberg, D.: Genetic Algorithms. Addison-Wesley (1989)

    Google Scholar 

  55. Gotteland, J.B.: Optimisation du trafic au sol sur les grands aéroports. Ph.D. thesis, INPT (2004)

    Google Scholar 

  56. Granger, G., Durand, N., Alliot, J.M.: Optimal resolution of en route conflicts. In: ATM 2001 (2001)

    Google Scholar 

  57. Gudise, V., Venayagamoorthy, G.: Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium (2003)

    Google Scholar 

  58. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  59. Hu, X., Di Paolo, E.: An efficient genetic algorithm with uniform crossover for the multi-objective airport gate assignment problem. In: IEEE Congress on Evolutionary Computation, 2007, CEC 2007, pp. 55–62 (2007). doi:10.1109/CEC.2007.4424454

  60. Hu, X.B., Chen, W.H., Di Paolo, E.: Multiairport capacity management: Genetic algorithm with receding horizon. IEEE Transactions on Intelligent Transportation Systems 8(2), 254–263 (2007)

    Google Scholar 

  61. Hu, X.B., Di Paolo, E.: A ripple-spreading genetic algorithm for the aircraft sequencing problem. Evolutionary Computation 19(1), 77–106 (2011)

    Google Scholar 

  62. Hu, X.B., Di Paolo, E.: Binary-representation-based genetic algorithm for aircraft arrival sequencing and scheduling. IEEE Transactions on Intelligent Transportation Systems 9(2), 301–310 (2008). doi:10.1109/TITS.2008.922884

    Google Scholar 

  63. Hu, X.B., Di Paolo, E.: An efficient genetic algorithm with uniform crossover for air traffic control. Comput. Computers and Operations Research 36(1), 245–259 (2009). doi:10.1016/j.cor.2007.09.005. URL http://dx.doi.org/10.1016/j.cor.2007.09.005

    Google Scholar 

  64. Kicinger, R., Yousefi, A.: Heuristic method for 3D airspace partitioning: Genetic algorithm and agent-based approach. AIAA Paper 7058 (2009)

    Google Scholar 

  65. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  66. Lei, X., Fu, A., Shi, Z.: The aircraft departure scheduling based on second-order oscillating particle swarm optimization algorithm. In: 2008 IEEE World Congress on Computational Intelligence, Hong Kong, June 1–6 (2008)

    Google Scholar 

  67. Letrouit, V.: Optimisation du réseau des routes aériennes en Europe. Ph.D. thesis, Institut National Polytechnique de Grenoble (1998)

    Google Scholar 

  68. Leung, F., Lam, H., Ling, S., Tam, P.: Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural Networks 14(1), 79–88 (2003)

    Google Scholar 

  69. Liang, J., Qin, A., Suganthan, P., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)

    Google Scholar 

  70. Malaek, S.M., Alaeddini, A., Gerren, D.S.: Optimal maneuvers for aircraft conflict resolution based on efficient genetic webs. IEEE Transactions on Aerospace and Electronic Systems 47(4), 2457–2472 (2011)

    Google Scholar 

  71. Maugis, L.: Mathematical programming for the air traffic flow management problem with en-route capacities. In: XVI World Conference of the International Federation of Operational Research Societies (1996)

    Google Scholar 

  72. Mehadhebi, K.: A methodology for the design of a route network. In: Proceedings of the Third Air Traffic Management R & D Seminar, ATM-2000, Naples. Eurocontrol & FAA (2000)

    Google Scholar 

  73. Meng, G., Qi, F.: Flight conflict resolution for civil aviation based on ant colony optimization. In: Fifth International Symposium on Computational Intelligence and Design (2012)

    Google Scholar 

  74. Michalewicz, Z.: Genetic algorithms + Data Structures = Evolution Programs. Springer (1992)

    Google Scholar 

  75. Mondoloni, S., Conway, S., D, P.: An airborne conflict resolution approach using a genetic algorithm (2001)

    Google Scholar 

  76. Odoni, A.: The flow management problem in air traffic control. In: Flow Control of Congested Network, pp. 269–288 (1987)

    Google Scholar 

  77. Oussedik, S.: Application de l’évolution artificielle aux problèmes de congestion du trafic aérien. Ph.D. thesis, Ecole Polytechnique (2000)

    Google Scholar 

  78. Oussedik, S., Delahaye, D.: Reduction of air traffic congestion by genetic algorithms. In: Parallel Problem Soving from Nature (PPSN98) (1998)

    Google Scholar 

  79. Oussedik, S., Delahaye, D., Schoenauer, M.: Dynamic air traffic planning by genetic algorithms. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, vol. 2 (1999). doi:10.1109/CEC.1999.782547

  80. Pesic, B., Durand, N., Alliot, J.M.: Aircraft ground traffic optimisation using a genetic algorithm. In: GECCO 2001 (2001)

    Google Scholar 

  81. Riviere, T.: Redesign of the European route network for sector-less. In: 23rd DASC (2004)

    Google Scholar 

  82. Roling, P., Visser, H.G.: Optimal airport surface traffic planning using mixed-integer linera programming. International Journal of Aerospace Engineering (2008)

    Google Scholar 

  83. Siddiquee, M.: Mathematical aids in air route network design. In: IEEE Conference on Decision and Control, 12th Symposium on Adaptive Processes (1973)

    Google Scholar 

  84. Slowik, A., Bialko, M.: Training of artificial neural networks using differential evolution algorithm. In: Conference on Human System Interactions (2008)

    Google Scholar 

  85. Sridhar, B., Grabbe, S., Sheth, K., Bilimoria, K.: Initial study of tube networks for flexible airspace utilization. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibition, Keystone, CO (2006)

    Google Scholar 

  86. Su, J., Zhang, X., Guan, X.: 4D-trajectory conflict resolution using cooperative coevolution. In: Proceedings of the 2012 International Conference on Information Technology and Software Engineering (2012)

    Google Scholar 

  87. Tandale, M., Menon, P.: Genetic algorithm based ground delay program computations for sector density control. In: AIAA Guidance Navigation and Control Conference, Hilton Head, SC, 20–23 August (2007)

    Google Scholar 

  88. Vanaret, C., Gianazza, D., Durand, N., Gotteland, J.B.: Benchmarking conflict resolution algorithms. In: 5th International Conference on Research in Air Transportation (ICRAT 2012), May 22–25, 2012, University of California, Berkeley (2012)

    Google Scholar 

  89. Vivona, R.A., Karr, D.A., Roscoe, D.A.: Pattern-based genetic algorithm for airborne conflict resolution. In: AIAA Guidance Navigation Control Conference Exibition (2006)

    Google Scholar 

  90. Xue, M.: Airspace sector redesign based on Voronoi diagrams. Journal of Aerospace Conputing, Information and Communication 6(12), 624–634 (2009)

    Google Scholar 

  91. Xue, M., Kopardekar, P.: High-capacity tube network design using the Hough transform. Journal of Guidance, Control, and Dynamics 32(3), 788–795 (2009)

    Google Scholar 

  92. Zelinski, S.: A comparison of algorithm generated sectorization. In: 8th USA/Europe Air Traffic Management Research and Development Seminar (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Durand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Durand, N., Gianazza, D., Gotteland, JB., Vanaret, C., Alliot, JM. (2016). Applications to Air Traffic Management. In: Siarry, P. (eds) Metaheuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-45403-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45403-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45401-6

  • Online ISBN: 978-3-319-45403-0

  • eBook Packages: Computer ScienceComputer Science (R0)