Skip to main content

QCM-ECIS: Combined Viscoelastic and Dielectric Sensing of Cells

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A combination of the two transducer principles QCM and electrochemical impedance spectroscopy (EIS) was applied in the past for in situ monitoring and analyzing solution properties (Xie et al. in Analytica Chimica Acta 533:213–224, [1]), degradation of thin polymer films (Sabot and Krause in Anal Chem 74:3304–3311, [2]), formation of supported lipid bilayers (Briand et al. in Analyst 135:343–350, [3]), and adsorption processes of proteins on bare (He et al. in J Biochem Biophys Methods 62:191–205, [4]), polymer-coated (Xie et al. in J Electroanal Chem 478:1–8, [5]), and with platinum (Xie et al.in J Colloid Interface Sci 262:107–115, [6]) or copper (Pinto et al. Electrochimica Acta 53:7460–7466, [7]) electroplated QCM gold electrodes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xie Q, Xiang C, Yang X, Zhang Y, Li M et al (2005) Simultaneous impedance measurements of two one-face sealed resonating piezoelectric quartz crystals for in situ monitoring of electrochemical processes and solution properties. Anal Chim Acta 533:213–224

    Article  CAS  Google Scholar 

  2. Sabot A, Krause S (2002) Simultaneous quartz crystal microbalance impedance and electrochemical impedance measurements. investigation into the degradation of thin polymer films. Anal Chem 74:3304–3311

    Article  CAS  Google Scholar 

  3. Briand E, Zäch M, Svedhem S, Kasemo B, Petronis S (2010) Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides. The Analyst 135:343–350

    Article  CAS  Google Scholar 

  4. He H, Xie Q, Zhang Y, Yao S (2005) A simultaneous electrochemical impedance and quartz crystal microbalance study on antihuman immunoglobulin G adsorption and human immunoglobulin G reaction. J Biochem Biophys Methods 62:191–205

    Article  CAS  Google Scholar 

  5. Xie Q, Zhang Y, Xu M, Li Z, Yuan Y et al (1999) Combined quartz crystal impedance and electrochemical impedance measurements during adsorption of bovine serum albumin onto bare and cysteine- or thiophenol-modified gold electrodes. J Electroanal Chem 478:1–8

    Article  CAS  Google Scholar 

  6. Xie Q, Xiang C, Yuan Y, Zhang Y, Nie L et al (2003) A novel dual-impedance-analysis EQCM system-investigation of bovine serum albumin adsorption on gold and platinum electrode surfaces. J Colloid Interface Sci 262:107–115

    Article  CAS  Google Scholar 

  7. Pinto EM, Soares DM, Brett CMa (2008) Interaction of BSA protein with copper evaluated by electrochemical impedance spectroscopy and quartz crystal microbalance. Electrochim Acta 53:7460–7466

    Article  CAS  Google Scholar 

  8. Janshoff A, Wegener J, Sieber M, Galla H-J (1996) Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J 25:93–103

    Article  CAS  Google Scholar 

  9. Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci USA 88:7896–7900

    Article  CAS  Google Scholar 

  10. Michaelis S (2010) Non-invasive biosensors to characterize the cell-material interface. Thesis, Westfälische Wilhelms-University Münster

    Google Scholar 

  11. Steinem C, Janshoff A, Wegener J, Ulrich W-P, Willenbrink W et al (1997) Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosens Bioelectron 12:787–808

    Article  CAS  Google Scholar 

  12. Heitmann V, Reiß B, Wegener J (2007) The quartz crystal microbalance in cell biology: basics and applications. In: Steinem C, Janshoff A (eds) Piezoelectric sensors, Springer, Berlin, pp 303–338

    Google Scholar 

  13. Wegener J, Janshoff A, Steinem C (2001) The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Cell Biochem Biophys 34:121–151

    Article  CAS  Google Scholar 

  14. Reiß B (2004) Mikrogravimetrische Untersuchung Des Adhäsionskontakts Tierischer Zellen: Eine Biophysikalische Studie. Thesis, Westälische Wilhelms-University Münster

    Google Scholar 

  15. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imagej: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  16. Rasband WS, ImageJ. http://imagej.nih.gov/ij/

  17. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554

    Article  CAS  Google Scholar 

  18. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  CAS  Google Scholar 

  19. Green K, Jones J (1996) Desmosomes and hemidesmosomes: structure and function of molecular components. FASEB J 10:871–881

    CAS  Google Scholar 

  20. Sonnenberg A, Calafat J, Janssen H, Daams H, van der Raaij-Helmer LM et al (1991) Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol 113:907–917

    Article  CAS  Google Scholar 

  21. Garrod DR (1993) Desmosomes and hemidesmosomes. Curr Opin Cell Biol 5:30–40

    Article  CAS  Google Scholar 

  22. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525

    Article  CAS  Google Scholar 

  23. Kirchhofer D, Grzesiak J, Pierschbacher MD (1991) Calcium as a potential physiological regulator of integrin-mediated cell adhesion. J Biol Chem 266:4471–4477

    CAS  Google Scholar 

  24. Freemont AJ, Hoyland JA (1996) Cell adhesion molecules. Clin Mol Pathol 49:M321–M330

    Article  CAS  Google Scholar 

  25. Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573

    Article  CAS  Google Scholar 

  26. Takeichi M (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59:237–252

    Article  CAS  Google Scholar 

  27. O’Connor CM, Adams JU (2010) Essentials of cell biology. NPG Education, Cambridge, MA

    Google Scholar 

  28. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  CAS  Google Scholar 

  29. Gumbiner B (1987) Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol Cell Physiol 253:C749–C758

    CAS  Google Scholar 

  30. Stevenson BR, Anderson JM, Bullivant S (1988) The epithelial tight junction: structure, function and preliminary biochemical characterization. Mol Cell Biochem 83:129–145

    Article  CAS  Google Scholar 

  31. Pitelka DR, Taggart BN, Hamamoto ST (1983) Effects of extracellular calcium depletion on membrane topography and occluding junctions of mammary epithelial cells in culture. J Cell Biol 96:613–624

    Article  CAS  Google Scholar 

  32. Rodgers LS, Fanning AS (2011) Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton 68:653–660

    Article  CAS  Google Scholar 

  33. Elson EL (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem 17:397–430

    Article  CAS  Google Scholar 

  34. Wakatsuki T, Schwab B, Thompson NC, Elson EL (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci 114:1025–1036

    CAS  Google Scholar 

  35. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78:520–535

    Article  CAS  Google Scholar 

  36. Rotsch C, Braet F, Wisse E, Radmacher M (1997) AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol Int 21:685–696

    Article  CAS  Google Scholar 

  37. Stevenson BR, Begg DA (1994) Concentration-dependent effects of cytochalasin d on tight junctions and actin filaments in MDCK epithelial cells. J Cell Sci 107:367–375

    CAS  Google Scholar 

  38. Meza I, Ibarra G (1980) Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J Cell Biol 87:746–754

    Article  CAS  Google Scholar 

  39. Brown S, Spudich J (1979) Cytochalasin inhibits the rate of elongation of actin filament fragments. J Cell Biol 83:657–662

    Article  CAS  Google Scholar 

  40. Urbanik E, Ware R (1989) Actin filament capping of cytochalasins and cleaving activity B, D, E, and H. Arch Biochem Biophys 269:181–187

    Article  CAS  Google Scholar 

  41. Yahara I, Harada F, Sekita S (1982) Correlation between effects of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro. J Cell Biol 92:69–78

    Article  CAS  Google Scholar 

  42. Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  CAS  Google Scholar 

  43. Pietuch A (2012) Membrane mechanics governs cell mechanics in epithelial cell: how surface area regulation ensures tension homeostasis. Thesis, Georg-August-Universität Göttingen

    Google Scholar 

  44. Wu HW, Kuhn T, Moy VT (1998) Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–397

    Article  CAS  Google Scholar 

  45. Smith BA, Tolloczko B, Martin JG, Grütter P (2005) Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys J 88:2994–3007

    Google Scholar 

  46. Roduit C, Sekatski S, Dietler G, Catsicas S, Lafont F et al (2009) Stiffness tomography by atomic force microscopy. Biophys J 97:674–677

    Article  CAS  Google Scholar 

  47. Kasas S, Wang X, Hirling H, Marsault R, Huni B et al (2005) Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil Cytoskelet 62:124–132

    Article  CAS  Google Scholar 

  48. Grimm KB, Oberleithner H, Fels J (2014) Fixed endothelial cells exhibit physiologically relevant nanomechanics of the cortical actin web. Nanotechnology 25:1–7

    Article  CAS  Google Scholar 

  49. Hochmuth RM (1993) Measuring the mechanical properties of individual human blood cells. J Biomech Eng 115:515–519

    Article  CAS  Google Scholar 

  50. Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22

    Article  CAS  Google Scholar 

  51. Sato M, Theret DP, Wheeler LT, Ohshima N, Nerem RM (1990) Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J Biomech Eng 112:263–268

    Article  CAS  Google Scholar 

  52. Erickson CA (1980) The deformability of BHK cells and polyoma virus-transformed BHK cells in relation to locomotory behaviour. J Cell Sci 44:187–200

    CAS  Google Scholar 

  53. Thoumine O, Cardoso O, Meister JJ (1999) Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur Biophys J 28:222–234

    Article  CAS  Google Scholar 

  54. Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68:988–996

    Article  CAS  Google Scholar 

  55. Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049

    Google Scholar 

  56. Bausch AR, Möller W, Sackmann E (1999) Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J 76:573–579

    Google Scholar 

  57. Fabry B, Maksym G, Butler J, Glogauer M, Navajas D et al (2001) Scaling the microrheology of living cells. Phys Rev Lett 87:1–4

    Article  CAS  Google Scholar 

  58. Hu S, Eberhard L, Chen J, Love JC, Butler JP et al (2004) Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am J Physiol Cell Physiol 287:C1184–C1191

    Article  CAS  Google Scholar 

  59. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  CAS  Google Scholar 

  60. Wang N (1998) Mechanical interactions among cytoskeletal filaments. Hypertension 32:162–165

    Article  CAS  Google Scholar 

  61. Huang H, Sylvan J, Jonas M, Barresi R, So PTC et al (2005) Cell stiffness and receptors: evidence for cytoskeletal subnetworks. Am J Physiol Cell Physiol 288:C72–C80

    CAS  Google Scholar 

  62. Nagayama K, Nagano Y, Sato M, Matsumoto T (2006) Effect of actin filament distribution on tensile properties of smooth muscle cells obtained from rat thoracic aortas. J Biomech 39:293–301

    Article  Google Scholar 

  63. Bereiter-Hahn J (1987) Scanning acoustic microscopy visualizes cytomechanical responses to cytochalasin D. J Microsc 146:29–39

    Article  CAS  Google Scholar 

  64. Karl I, Bereiter-Hahn J (1999) Tension modulates cell surface motility: a scanning acoustic microscopy study. Cell Motil Cytoskelet 43:349–359

    Article  CAS  Google Scholar 

  65. Petersen N, McConnaughey W (1982) Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc Natl Acad Sci USA 79:5327–5331

    Article  CAS  Google Scholar 

  66. Rheinlaender J, Schäffer TE (2013) Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope. Soft Matter 9:3230–3236

    Article  CAS  Google Scholar 

  67. Kovbasnjuk O, Szmulowicz U, Spring K (1998) Regulation of the MDCK cell tight junction. J Membr Biol 104:93–104

    Article  Google Scholar 

  68. Frederiksen O, Leyssac P (1977) Effects of cytochalasin B and dimethylsulfoxide on isosmotic fluid transport by rabbit gall-bladder in vitro. J Physiol 265:103–118

    Article  CAS  Google Scholar 

  69. Opp D, Wafula B, Lim J, Huang E, Lo J-C et al (2009) Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens Bioelectron 24:2625–2629

    Article  CAS  Google Scholar 

  70. Anderson J, Van Itallie C (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol Gastrointest Liver Physiol 269:G467–G475

    CAS  Google Scholar 

  71. Madara JL, Barenberg D, Carlson S (1986) Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol 102:2125–2136

    Article  CAS  Google Scholar 

  72. Madara J (1987) Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol 253:C171–C175

    CAS  Google Scholar 

  73. Lo C-M, Keese CR, Giaever I (1993) Monitoring motion of confluent cells in tissue culture. Exp Cell Res 204:102–109

    Article  CAS  Google Scholar 

  74. Matthews J, Tally K, Smith J, Awtrey C (1994) F-actin differentially alters epithelial transport and barrier function. J Surg Res 56:505–509

    Article  CAS  Google Scholar 

  75. Hoh JH, Schoenenberger C-A (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci 107:1105–1114

    Google Scholar 

  76. Yang Y-T, Lin C-CK, Liao J-D, Chang C-W, Ju M-S (2010) Continuous depth-sensing nano-mechanical characterization of living, fixed and dehydrated cells attached on a glass substrate. Nanotechnology 21:1–7

    CAS  Google Scholar 

  77. Watson GS, Watson JA, Myhra S (2006) Morphology, mechanical properties and manipulation of living cells: atomic force microscopy. In: Ivanova EP (ed) Surface structure and properties of microbial cells, pp 1–29

    Google Scholar 

  78. Shroff S, Saner D, Lal R (1995) Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am J Physiol Cell Physiol 38:C286–C292

    Google Scholar 

  79. Hutter JL, Chen J, Wan WK, Uniyal S, Leabu M et al (2005) Atomic force microscopy investigation of the dependence of cellular elastic moduli on glutaraldehyde fixation. J Microsc 219:61–68

    Article  CAS  Google Scholar 

  80. Velegol SB, Logan BE (2002) Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves. Langmuir 18:5256–5262

    Article  CAS  Google Scholar 

  81. Steltenkamp S, Rommel C, Wegener J, Janshoff A (2006) Membrane stiffness of animal cells challenged by osmotic stress. Small 2:1016–1020

    Article  CAS  Google Scholar 

  82. Baumgarten S, Robelek R (2011) Surface Plasmon Resonance (SPR) sensors for the rapid, sensitive detection of the cellular response to osmotic stress. Sens Actuators B Chem 156:798–804

    Article  CAS  Google Scholar 

  83. Kang H-W, Muramatsu H (2009) Monitoring of cultured cell activity by the quartz crystal and the micro CCD camera under chemical stressors. Biosens Bioelectron 24:1318–1323

    Article  CAS  Google Scholar 

  84. Voet D, Voet JG, Pratt CW (2002) Fundamentals of biochemistry. Wiley, Weinheim

    Google Scholar 

  85. Molina R, Han D-Y, Su X-F, Zhao R-Z, Zhao M et al (2011) Cpt-cAMP activates human epithelial sodium channels via relieving self-inhibition. Biochem Biophys Acta 1808:1818–1826

    Article  CAS  Google Scholar 

  86. Riethmüller C, Jungmann P, Wegener J, Oberleithner H (2006) Bradykinin shifts endothelial fluid passage from para- to transcellular routes. Pflügers Archiv Eur J Physiol 453:157–165

    Article  CAS  Google Scholar 

  87. Langeler EG, van Hinsbergh VW (1991) Norepinephrine and iloprost improve barrier function of human endothelial cell monolayers: role of cAMP. Am J Physiol 260:C1052–C1059

    CAS  Google Scholar 

  88. Duffey ME, Hainau B, Ho S, Bentzel CJ (1981) Regulation of epithelial tight junction permeability by cyclic AMP. Nature 294:451–453

    Article  CAS  Google Scholar 

  89. Wegener J, Hakvoort A, Galla H-J (2000) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853:115–124

    Article  CAS  Google Scholar 

  90. Stelzner TJ, Weil JV, O’Brien RF (1989) Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J Cell Physiol 139:157–166

    Article  CAS  Google Scholar 

  91. Wegener J, Zink S, Rösen P, Galla H-J (1999) Use of electrochemical impedance measurements to monitor beta-adrenergic stimulation of bovine aortic endothelial cells. Pflügers Archiv Eur J Physiol 437:925–934

    Article  CAS  Google Scholar 

  92. Shivanna M, Srinivas SP (2010) Elevated cAMP opposes (TNF-Alpha)-induced loss in the barrier integrity of corneal endothelium. Mol Vis 16:1781–1790

    CAS  Google Scholar 

  93. Langeler EG, Snelting-Havinga I, van Hinsbergh VW (1989) Passage of low density lipoproteins through monolayers of human arterial endothelial cells. effects of vasoactive substances in an in vitro model. Arterioscler Thromb Vasc Biol 9:550–559

    Article  CAS  Google Scholar 

  94. Casnocha SA, Eskin SG, Hall ER, McIntire LV (1989) Permeability of human endothelial monolayers: effect of vasoactive agonists and cAMP. J Appl Physiol 67:1997–2005

    CAS  Google Scholar 

  95. Jacobson H (1979) Altered permeability in the proximal tubule response to cyclic AMP. Am J Physiol 236:F71–F79

    CAS  Google Scholar 

  96. Balda MS, Gonzalez-Mariscal L (1991) Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol 122:193–202

    Article  CAS  Google Scholar 

  97. Ramachandran C, Patil RV, Sharif Na, Srinivas SP (2011) Effect of elevated intracellular cAMP levels on actomyosin contraction in bovine trabecular meshwork cells. Invest Ophthalmol Vis Sci 52:1474–1485

    Article  CAS  Google Scholar 

  98. Bensch KG, Davison PM, Karasek MA (1983) Factors controlling the in vitro growth pattern of human microvascular endothelial cells. J Ultrastruct Res 82:76–89

    Article  CAS  Google Scholar 

  99. Ohta Y, Akiyama T, Nishida E, Sakai H (1987) Protein kinase C and cAMP-dependent protein kinase induce opposite effects on actin polymerizability. FEBS Lett 222:305–310

    Article  CAS  Google Scholar 

  100. Howe AK (2004) Regulation of actin-based cell migration by cAMP/PKA. Biochem Biophys Acta 1692:159–174

    Article  CAS  Google Scholar 

  101. Voldman J (2006) electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Article  CAS  Google Scholar 

  102. McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978

    Article  Google Scholar 

  103. Tai G, Reid B, Cao L, Zhao M (2009) Electrotaxis and wound healing experimental methods to study electric fields as a directional signal for cell migration. In: Jin T, Hereld D (eds) Chemotaxis, Humana Press, pp 77–97

    Google Scholar 

  104. Stolwijk JA (2011) Electric manipulation and impedance analysis of adherent cells on gold-film electrodes. Thesis, University of Regensburg

    Google Scholar 

  105. Ghosh PM, Keese CR, Giaever I (1993) Monitoring electropermeabilization in the plasma membrane of adherent mammalian cells. Biophys J 64:1602–1609

    Article  CAS  Google Scholar 

  106. Keese CR, Wegener J, Walker SR, Giaever I (2004) Electrical wound-healing assay for cells in Vitro. Proc Natl Acad Sci USA 101:1554–1559

    Article  CAS  Google Scholar 

  107. Wegener J, Keese CR, Giaever I (2002) Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques 33:348–357

    CAS  Google Scholar 

  108. Stolwijk JA, Hartmann C, Balani P, Albermann S, Keese CR et al (2011) Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations. Biosens Bioelectron 26:4720–4727

    Article  CAS  Google Scholar 

  109. Argraves KM, Gazzolo PJ, Groh EM, Wilkerson BA, Matsuura BS et al (2008) High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. J Biol Chem 283:25074–25081

    Article  CAS  Google Scholar 

  110. Heijink IH, van Oosterhout AJM, Kapus A (2010) Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction. Eur Respir J 36:1016–1026

    Article  CAS  Google Scholar 

  111. Ablin RJ, Kynaston HG, Mason MD, Jiang WG (2011) Prostate transglutaminase (TGase-4) antagonizes the anti-tumour action of MDA-7/IL-24 in prostate cancer. J Transl Med 9:49

    Article  CAS  Google Scholar 

  112. van Gils JM, Stutterheim J, van Duijn TJ, Zwaginga JJ, Porcelijn L et al (2009) HPA-1a alloantibodies reduce endothelial cell spreading and monolayer integrity. Mol Immunol 46:406–415

    Article  CAS  Google Scholar 

  113. Applied BioPhysics, ECIS Cultureware™. http://www.biophysics.com/cultureware.php

  114. Wegener J, Janshoff A, Galla H-JH-J (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J 28:26–37

    Article  CAS  Google Scholar 

  115. Shen F, Lee KH, Shea SJO, Lu P, Ng TY (2003) Frequency interference between two quartz crystal microbalances. IEEE Sens J 3:274–281

    Article  Google Scholar 

  116. Andrade EN da C (1934) XLI. A theory of the viscosity of liquids-Part I. Philos Mag Ser 7 17:497–511

    Google Scholar 

  117. Raman CV (1923) A theory of the viscosity of liquids. Nature 111:532–533

    Article  CAS  Google Scholar 

  118. Sartorius AG (n.d) Handbuch Der Elektroanalytik Teil 3 - Die Elektrische Leitfähigkeit, Göttingen

    Google Scholar 

  119. Arnold M, Cavalcanti-Adam EA, Glass R, Blümmel J, Eck W et al (2004) Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5:383–388

    Article  CAS  Google Scholar 

  120. Buendia B, Bré MH, Griffiths G, Karsenti E (1990) Cytoskeletal control of centrioles movement during the establishment of polarity in madin-darby canine kidney cells. J Cell Biol 110:1123–1135

    Article  CAS  Google Scholar 

  121. Rotsch C, Jacobson K, Radmacher M (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci 96:921–926

    Article  CAS  Google Scholar 

  122. Salbreux G, Charras G, Paluch E (2012) Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 22:536–545

    Article  CAS  Google Scholar 

  123. Gauthier NC, Masters TA, Sheetz MP (2012) Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22:527–535

    Article  CAS  Google Scholar 

  124. Wegener J, Keese CR, Giaever I (2000) Electric Cell-Substrate Impedance Sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166

    Article  CAS  Google Scholar 

  125. Frisch T, Thoumine O (2002) Predicting the kinetics of cell spreading. J Biomech 35:1137–1141

    Article  Google Scholar 

  126. Misfeldt D (1976) Transepithelial transport in cell culture. Proc Natl Acad Sci 73:1212–1216

    Article  CAS  Google Scholar 

  127. Cereijido M, Robbins E (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77:853–880

    Article  CAS  Google Scholar 

  128. Richardson J, Scalera V, Simmons N (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochem Biophys Acta 673:26–36

    Article  CAS  Google Scholar 

  129. Cereijido M, Ehrenfeld J (1980) Structural and functional membrane polarity in cultured monolayers of MDCK cells. J Membr Biol 52:147–159

    Article  CAS  Google Scholar 

  130. Simmons N (1981) Ion transport in “Tight” epithelial monolayers of MDCK cells. J Membr Biol 59:105–114

    Article  CAS  Google Scholar 

  131. Gonzalez-Mariscal L, De Ramirez B, Cereijido M (1985) Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol 86:113–125

    Article  CAS  Google Scholar 

  132. Harris AR, Peter L, Bellis J, Baum B, Kabla AJ et al (2012) Characterizing the mechanics of cultured cell monolayers. Proc Natl Acad Sci 109:16449–16454

    Article  CAS  Google Scholar 

  133. Lo C-M, Keese CR, Giaever I (1995) Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J 69:2800–2807

    Article  CAS  Google Scholar 

  134. Wegener J, Sieber M, Galla H-J (1996) Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. J Biochem Biophys Methods 32:151–170

    Article  CAS  Google Scholar 

  135. Stevenson BR, Anderson JM, Goodenough DA, Mooseker MS (1988) Tight junction structure and ZO-1 content are identical in two strains of madin-darby canine kidney cells which differ in transepithelial resistance. J Cell Biol 107:2401–2408

    Article  CAS  Google Scholar 

  136. Griepp EB, Dolan WJ, Robbins ES, Sabatini DD (1983) Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial cells. J Cell Biol 96:693–702

    Article  CAS  Google Scholar 

  137. Erben M, Decker S, Franke H, Galla H-J (1995) Electrical resistance measurements on cerebral capillary endothelial cells–a new technique to study small surface areas. J Biochem Biophys Methods 30:227–238

    Article  CAS  Google Scholar 

  138. Hein M, Madefessel C, Haag B, Teichmann K, Post A et al (1992) Implications of a non-lamellar lipid phase for the tight junction stability. part ii: reversible modulation of transepithelial resistance in high and low resistance MDCK-cells by basic amino acids, Ca2+, protamine and protons. Chem Phys Lipid 63:223–233

    Article  CAS  Google Scholar 

  139. Balda MS, Whitney JA, Flores C, González S, Cereijido M et al (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049

    Article  CAS  Google Scholar 

  140. Schoenenberger C-A, Zuk A, Zinkl GM, Kendall D, Matlin KS (1994) Integrin expression and localization in normal MDCK cells and transformed MDCK cells lacking apical polarity. J Cell Sci 107:527–541

    CAS  Google Scholar 

  141. Sedar A, Forte J (1964) Effects of calcium depletion on the junctional complex between oxyntic cells of gastric glands. J Cell Biol 173–188

    Google Scholar 

  142. Martinez-Palomo A, Meza I, Beaty G, Cereijido M (1980) Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol 87:736–745

    Article  CAS  Google Scholar 

  143. Kartenbeck J, Schmelz M, Franke WW, Geiger B (1991) Endocytosis of junctional cadherins in bovine kidney epithelial (MDBK) cells cultured in low Ca2+ ion medium. J Cell Biol 113:881–892

    Article  CAS  Google Scholar 

  144. Citi S (1992) Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J Cell Biol 117:169–178

    Article  CAS  Google Scholar 

  145. Stevenson BR, Goodenough DA (1984) Zonulae occludentes in junctional complex-enriched fractions from mouse liver: preliminary morphological and biochemical characterization. J Cell Biol 98:1209–1221

    Article  CAS  Google Scholar 

  146. Volberg T, Geiger B, Kartenbeck J, Franke WW (1986) Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ ions. J Cell Biol 102:1832–1842

    Article  CAS  Google Scholar 

  147. Kartenbeck J, Schmid E, Franke W, Geiger B (1982) Different modes of internalization of proteins associated with adhaerens junctions and desmosomes: experimental separation of lateral contacts induces endocytosis. EMBO J 725–732

    Google Scholar 

  148. Volk T, Geiger B (1986) A-CAM: A 135-kD receptor of intercellular adherens junctions. I. Immunoelectron microscopic localization and biochemical studies. J Cell Biol 103:1441–1450

    Article  CAS  Google Scholar 

  149. Takeichi M (1988) The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development (Cambridge, England) 102:639–655

    Google Scholar 

  150. Watt FM, Mattey DL, Garrod DR (1984) Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J Cell Biol 99:2211–2215

    Article  CAS  Google Scholar 

  151. Mattey DL, Garrod DR (1986) Splitting and internalization of the desmosomes of cultured kidney epithelial cells by reduction in calcium concentration. J Cell Sci 85:113–124

    CAS  Google Scholar 

  152. Lovelady DC, Friedman J, Patel S, Rabson DA, Lo C-M (2009) Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion. Biosens Bioelectron 24:2250–2254

    Article  CAS  Google Scholar 

  153. Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci USA 81:3761–3764

    Article  CAS  Google Scholar 

  154. Wegener J, Seebach J, Janshoff A, Galla H-J (2000) Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. Biophys J 78:2821–2833

    Article  CAS  Google Scholar 

  155. Tarantola M, Sunnick E, Schneider D, Marel A-K, Kunze A et al (2011) Dynamic changes of acoustic load and complex impedance as reporters for the cytotoxicity of small molecule inhibitors. Chem Res Toxicol 24:1494–1506

    Article  CAS  Google Scholar 

  156. Li F, Wang JH-C, Wang Q-M (2007) Monitoring cell adhesion by using thickness shear mode acoustic wave sensors. Biosens Bioelectron 23:42–50

    Article  CAS  Google Scholar 

  157. Tymchenko N, Nilebäck E, Voinova MV, Gold J, Kasemo B et al (2012) Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D. Biointerphases 7:43

    Article  CAS  Google Scholar 

  158. Saitakis M, Tsortos A, Gizeli E (2010) Probing the interaction of a membrane receptor with a surface-attached ligand using whole cells on acoustic biosensors. Biosens Bioelectron 25:1688–1693

    Article  CAS  Google Scholar 

  159. Petroll WM, Ma L (2003) Direct, dynamic assessment of cell-matrix interactions inside fibrillar collagen lattices. Cell Motil Cytoskelet 264:254–264

    Article  Google Scholar 

  160. Carragher NO, Frame MC (2004) Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14:241–249

    Article  CAS  Google Scholar 

  161. Hofmann UG, Rotsch C, Parak WJ, Radmacher M (1997) Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J Struct Biol 119:84–91

    Article  CAS  Google Scholar 

  162. Stamenović D, Liang Z, Chen J, Wang N (2002) Effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells. J Appl Physiol 92:1443–1450

    Article  Google Scholar 

  163. Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Annu Rev Mater Res 41:75–97

    Article  CAS  Google Scholar 

  164. Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T et al (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82:253–258

    Article  CAS  Google Scholar 

  165. Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113:155–160

    Article  CAS  Google Scholar 

  166. Trickey WR, Vail TP, Guilak F (2004) The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res Official Publ Orthop Res Soc 22:131–139

    Article  Google Scholar 

  167. Wang N, Stamenović D (2000) Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol 279:C188–C194

    CAS  Google Scholar 

  168. Goldmann WH, Galneder R, Ludwig M, Kromm A, Ezzell RM (1998) Differences in F9 and 5.51 cell elasticity determined by cell poking and atomic force microscopy. FEBS Lett 424:139–142

    Article  CAS  Google Scholar 

  169. Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104:613–627

    Google Scholar 

  170. Pullarkat P, Fernandez P, Ott A (2007) Rheological properties of the eukaryotic cell cytoskeleton. Phys Rep 449:29–53

    Article  CAS  Google Scholar 

  171. Reiss B, Janshoff A, Steinem C, Seebach J, Wegener J (2003) Adhesion kinetics of functionalized vesicles and mammalian cells: a comparative study. Langmuir 19:1816–1823

    Article  CAS  Google Scholar 

  172. Höök F, Kasemo B (2007) The QCM-D technique for probing biomacromolecular recognition reactions. In: Steinem C, Janshoff A (eds) Piezoelectric sensors, Springer, Berlin, pp 425–447

    Google Scholar 

  173. Petersen K-U, Reuss L (1983) Cyclic AMP-induced chloride permeability in the apical membrane of necturus gallbladder epithelium. J Gen Physiol 81:705–729

    Article  CAS  Google Scholar 

  174. Copello J, Heming TA, Segal Y, Reuss L (1993) cAMP-activated apical membrane chloride channels in necturus gallbladder epithelium. Conductance, selectivity, and block. J Gen Physiol 102:177–199

    Article  CAS  Google Scholar 

  175. Kottra G (1995) Calcium is not involved in the cAMP-mediated stimulation of Cl- conductance in the apical membrane of necturus gallbladder epithelium. Pflügers Archiv Eur J Physiol 429:647–658

    Article  CAS  Google Scholar 

  176. Vank C, Frömter E, Kottra G (1999) Activation of an apical Cl-conductance by extracellular atp in necturus gallbladder is mediated by cAMP and not by [Ca2+]i. Pflügers Archiv Eur J Physiol 438:486–496

    CAS  Google Scholar 

  177. Anderson MP, Sheppard DN, Berger HA, Welsh MJ (1992) Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am J Physiol Lung Cell Mol Physiol 263:L1–L14

    CAS  Google Scholar 

  178. Reuss L (2001) Tight junction permeability to ions and water. In: Cereijido M, Anderson JM (eds) Tight junctions, CRC Press LLC, Boca Raton, FL, USA, pp 61–88

    Google Scholar 

  179. Alexander JS, Hechtman HB, Shepro D (1988) Phalloidin enhances endothelial barrier function and reduces inflammatory permeability in vitro. Microvasc Res 35:308–315

    Article  CAS  Google Scholar 

  180. Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A et al (1998) Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 244:312–316

    Article  CAS  Google Scholar 

  181. Weidenfeller C, Schrot S, Zozulya A, Galla H-J (2005) Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res 1053:162–174

    Article  CAS  Google Scholar 

  182. Arndt S, Seebach J, Psathaki K, Galla H-J, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19:583–594

    Article  CAS  Google Scholar 

  183. Schrot S, Weidenfeller C, Schäffer TE, Robenek H, Galla H-J (2005) Influence of hydrocortisone on the mechanical properties of the cerebral endothelium in vitro. Biophys J 89:3904–3910

    Article  CAS  Google Scholar 

  184. Albermann S (2004) In Situ Elektroporation Adhärenter Säugerzellen. Thesis, Westfälische Wilhelms-University Münster

    Google Scholar 

  185. Wiesner C, Pflüger M, Kopecky J, Stys D, Entler B et al (2008) Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene interdisziplinär 3:1–2

    Google Scholar 

  186. Charrier L, Yan Y, Driss A, Laboisse CL, Sitaraman SV et al (2005) ADAM-15 inhibits wound healing in human intestinal epithelial cell monolayers. Am J Physiol Gastrointest Liver Physiol 288:G346–G353

    Article  CAS  Google Scholar 

  187. Hsu C-C, Tsai W-C, Chen CP-C, Lu Y-M, Wang J-S (2010) Effects of negative pressures on epithelial tight junctions and migration in wound healing. Am J Physiol Cell Physiol 299:C528–C534

    Article  CAS  Google Scholar 

  188. Ghosh PM, Keese CR, Giaever I (1994) Morphological response of mammalian cells to pulsed Ac fields. Bioelectrochem Bioenerg 33:121–133

    Article  Google Scholar 

  189. Rols MP, Teissié J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089–1098

    Article  CAS  Google Scholar 

  190. Rols MP, Teissié J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  CAS  Google Scholar 

  191. Lucklum R, Eichelbaum F (2007) Interface circuits for QCM sensors. In: Steinem C, Janshoff A (eds) Piezoelectric sensors, Springer, Berlin, pp 3–47

    Google Scholar 

  192. Berg S, Johannsmann D (2001) Laterally coupled quartz resonators. Anal Chem 73:1140–1145

    Article  CAS  Google Scholar 

  193. Lu F, Lee HP, Lu P, Lim SP (2005) Finite element analysis of interference for the laterally coupled quartz crystal microbalances. Sens Actuators A 119:90–99

    Article  CAS  Google Scholar 

  194. Abe T, Esashi M (2000) One-chip multichannel Quartz Crystal Microbalance (QCM) fabricated by deep RIE. Sens Actuators A 82:139–143

    Article  CAS  Google Scholar 

  195. Tuantranont A, Wisitsora-at A, Sritongkham P, Jaruwongrungsee K (2011) A review of monolithic multichannel quartz crystal microbalance: a review. Anal Chim Acta 687:114–128

    Article  CAS  Google Scholar 

  196. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik Sa, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38:824–833

    Article  CAS  Google Scholar 

  197. Webb HK, Truong VK, Hasan J, Crawford RJ, Ivanova EP (2011) Physico-mechanical characterisation of cells using atomic force microscopy - current research and methodologies. J Microbiol Methods 86:131–139

    Article  Google Scholar 

  198. Guo Q, Xia Y, Sandig M, Yang J (2012) Characterization of cell elasticity correlated with cell morphology by atomic force microscope. J Biomech 45:304–309

    Article  Google Scholar 

  199. Sato H, Katano M, Takigawa T, Masuda T (2001) Estimation for the elasticity of vascular endothelial cells on the basis of atomic force microscopy and Young’s modulus of gelatin gels. Polym Bull 47:375–381

    Article  CAS  Google Scholar 

  200. Emad A, Heinz WF, Antonik MD, D’Costa NP, Nageswaran S et al (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 74:1564–1578

    Google Scholar 

  201. Bowen WR, Lovitt RW, Wright CJ (2000) Application of atomic force microscopy to the study of micromechanical properties of biological materials. Biotech Lett 22:893–903

    Article  CAS  Google Scholar 

  202. You HX, Yu L (1999) Atomic force microscopy imaging of living cells: progress, problems and prospects. Methods Cell Sci 21:1–17

    Article  CAS  Google Scholar 

  203. Marx KA, Zhou T, Montrone A, McIntosh D, Braunhut SJ (2005) Quartz crystal microbalance biosensor study of endothelial cells and their extracellular matrix following cell removal: evidence for transient cellular stress and viscoelastic changes during detachment and the elastic behavior of the pure matrix. Anal Biochem 343:23–34

    Article  CAS  Google Scholar 

  204. Johannsmann D (2007) Studies of viscoelasticity with the QCM. In: Steinem C, Janshoff A (eds) Piezoelectric sensors, Springer, Berlin, pp 49–109

    Google Scholar 

  205. Marx KA (2007) The quartz crystal microbalance and the electrochemical QCM: applications to studies of thin polymer films, electron transfer systems, biological macromolecules, biosensors, and cells. In: Steinem C, Janshoff A (eds) Piezoelectric sensors, Springer, Berlin, pp 371–424

    Google Scholar 

  206. Li F, Wang JH-C, Wang Q-M (2008) Thickness shear mode acoustic wave sensors for characterizing the viscoelastic properties of cell monolayer. Sens Actuators B Chem 128:399–406

    Article  CAS  Google Scholar 

  207. Kang H-W, Muramatsu H, Lee B-J, Kwon Y-S (2010) Monitoring of anticancer effect of cisplatin and 5-fluorouracil on HepG2 cells by quartz crystal microbalance and micro CCD camera. Biosens Bioelectron 26:1576–1581

    Article  CAS  Google Scholar 

  208. Fatisson J, Azari F, Tufenkji N (2011) Real-time QCM-D monitoring of cellular responses to different cytomorphic agents. Biosens Bioelectron 26:3207–3212

    Article  CAS  Google Scholar 

  209. Yang R, Chen JY, Xi N, Lai KWC, Qu C et al (2012) Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation. Exp Cell Res 318:521–526

    Article  CAS  Google Scholar 

  210. Sirghi L, Ponti J, Broggi F, Rossi F (2008) Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur Biophys J 37:935–945

    Article  CAS  Google Scholar 

  211. Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R et al (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7, 757–765. doi:10.1038/nnano.2012.167

  212. Harris AR, Charras GT (2011) Experimental Validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology 22:1–10

    Google Scholar 

  213. Leporatti S, Vergara D, Zacheo A, Vergaro V, Maruccio G et al (2009) Cytomechanical and topological investigation of MCF-7 cells by scanning force microscopy. Nanotechnology 20:1–6

    Article  CAS  Google Scholar 

  214. O’Hagan BMG, Doyle P, Allen JM, Sutton K, McKerr G (2004) The effects of atomic force microscopy upon nominated living cells. Ultramicroscopy 102:1–5

    Article  CAS  Google Scholar 

  215. You HX, Lau JM, Zhang S, Yu L (2000) Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology. Ultramicroscopy 82:297–305

    Article  CAS  Google Scholar 

  216. Michaelis S, Wegener J, Robelek R (2013) Label-free monitoring of cell-based assays: combining impedance analysis with SPR for multiparametric cell profiling. Biosens Bioelectron 49:63–70

    Article  CAS  Google Scholar 

  217. Xing JZ, Zhu L, Jackson JA, Gabos S, Sun X-J et al (2005) Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 18:154–161

    Article  CAS  Google Scholar 

  218. Solly K, Wang X, Xu X, Strulovici B, Zheng W (2004) Application of Real-Time Cell Electronic Sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol 2:363–372

    Article  CAS  Google Scholar 

  219. Atienza JM, Zhu J, Wang X, Xu X, Abassi Y (2005) Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen 10:795–805

    Article  CAS  Google Scholar 

  220. Rahim S, Üren A (2011) A real-time electrical impedance based technique to measure invasion of endothelial cell monolayer by cancer cells. J Visualized Exp e2792

    Google Scholar 

  221. Ceriotti L, Ponti J, Broggi F, Kob A, Drechsler S et al (2007) Real-time assessment of cytotoxicity by impedance measurement on a 96-well plate. Sens Actuators B Chem 123:769–778

    Article  CAS  Google Scholar 

  222. Astanina K, Simon Y, Cavelius C, Petry S, Kraegeloh A et al (2014) Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production. Acta Biomater 10:4896–4911

    Article  CAS  Google Scholar 

  223. Foster RR, Armstrong L, Baker S, Wong DWL, Wylie EC et al (2013) Glycosaminoglycan regulation by VEGFA and VEGFC of the glomerular microvascular endothelial cell glycocalyx in vitro. Am J Pathol 183:604–616

    Article  CAS  Google Scholar 

  224. Hartigan J, Liu C, Downey W (2010) Moving forward with label-free technology. Drug Discovery World 12:41–48

    Google Scholar 

  225. Huang GS, Wang M-T, Hong M-Y (2006) A versatile QCM matrix system for online and high-throughput bio-sensing. Analyst 131:382–387

    Article  CAS  Google Scholar 

  226. Jaruwongrungsee K, Maturos T (2009) Analysis of quartz crystal microbalance sensor array with circular flow chamber. Int J Appl Biomed Eng 2:50–54

    Google Scholar 

  227. Jin X, Huang Y, Mason A, Zeng X (2009) Multichannel monolithic quartz crystal microbalance gas sensor array. Anal Chem 81:595–603

    Article  CAS  Google Scholar 

  228. Ogi H, Nagai H, Fukunishi Y, Yanagida T, Hirao M et al (2010) Multichannel wireless-electrodeless quartz-crystal microbalance immunosensor. Anal Chem 82:3957–3962

    Article  CAS  Google Scholar 

  229. Rabe J, Büttgenbach S, Schröder J, Hauptmann P (2003) Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids. IEEE Sens J 3:361–368

    Article  CAS  Google Scholar 

  230. Zampetti E, Pantalei S, Macagnano A, Proietti E, Di Natale C et al (2008) Use of a multiplexed oscillator in a miniaturized electronic nose based on a multichannel quartz crystal microbalance. Sens Actuators B Chem 131:159–166

    Article  CAS  Google Scholar 

  231. Tatsuma T, Watanabe Y, Oyama N, Kitakizaki K, Haba M (1999) Multichannel quartz crystal microbalance. Anal Chem 71:3632–3636

    Article  CAS  Google Scholar 

  232. Marx KA, Zhou T, Long D (2005) Electropolymerized films formed from the amphiphilic decyl esters of D- and L-tyrosine compared to L-tyrosine using the electrochemical quartz crystal microbalance. Biomacromol 6:1698–1706

    Article  CAS  Google Scholar 

  233. Guo M, Chen J, Zhang Y, Chen K, Pan C et al (2008) Enhanced adhesion/spreading and proliferation of mammalian cells on electropolymerized porphyrin film for biosensing applications. Biosens Bioelectron 23:865–871

    Article  CAS  Google Scholar 

  234. Marx KA, Zhou T, McIntosh D, Braunhut SJ (2009) Electropolymerized tyrosine-based thin films: selective cell binding via peptide recognition to novel electropolymerized biomimetic tyrosine RGDY films. Anal Biochem 384:86–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Oberleitner .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Oberleitner, M. (2018). QCM-ECIS: Combined Viscoelastic and Dielectric Sensing of Cells. In: Label-free and Multi-parametric Monitoring of Cell-based Assays with Substrate-embedded Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45384-2_5

Download citation

Publish with us

Policies and ethics