Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 477 Accesses

Abstract

For cell studies in this work the adherent epithelial cell line MDCK–II (Madin Darby Canine Kidney, strain II), and the adherent epithelial-like cell line NRK (Normal Rat Kidney, strain 52E) were used. Both cell lines were obtained from the Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany). They grow on cell culture substrates as monolayers of cobblestone-like morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bulk waves occur in a boundary-free medium.

  2. 2.

    Surface waves occur along a single plane boundary (= semi-infinite solid).

  3. 3.

    Plate waves occur between two parallel plane boundaries.

References

  1. Wegener J, Janshoff A, Galla H-JH-J (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur. Biophys. J. 28:26–37

    Article  CAS  Google Scholar 

  2. Ende D, Mangold K-M (1993) Impedanzspektroskopie. Chem. unserer Zeit 27:134–140

    Article  CAS  Google Scholar 

  3. Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. John Wiley & Sons Inc., Hoboken

    Book  Google Scholar 

  4. Macdonald JR, Barsoukov E (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

  5. Grimnes SJ, Martinsen OG (2000) Bioimpedance and bioelectricity basics. Academic Press

    Google Scholar 

  6. Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET et al (1996) Acoustic wave sensors: theory, design, and physico-chemical applications. Academic Press, San Diego

    Google Scholar 

  7. Lichter J (2006) Crystals and oscillators. NEL Frequency Controls Inc. Application Note JL9113 Rev. C, pp 1–16

    Google Scholar 

  8. Grate JW, Martin SJ, White RM (1993) Acoustic wave microsensors—Part I. Anal. Chem. 65:940–948

    Article  Google Scholar 

  9. Grate JW, Martin SJ, White RM (1993) Acoustic wave microsensors. Part II. Anal. Chem. 65:987–996

    Article  Google Scholar 

  10. Janshoff A, Galla H-J, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew. Chem. Int. Ed. Engl. 39:4004–4032

    Article  CAS  Google Scholar 

  11. Sauerbrey G (1959) Verwendung von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowägung. Zeitschrift für Physik A Hadrons and Nuclei 155:206–222

    CAS  Google Scholar 

  12. Gautschi G (2002) Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers. Springer, Berlin

    Google Scholar 

  13. C. Köhnlein, “Der Piezoeffekt am Beispiel des Quarzkristalls”, http://www.piezoeffekt.de/

  14. Boston Piezo-Optics Inc., Material properties: crystal quartz. http://bostonpiezooptics.com/crystal-quartz

  15. Sapper A (2006) Mechanics and dynamics of liposomes and cells studied by QCM and ECIS. Johannes Gutenberg-University Mainz, Mainz

    Google Scholar 

  16. Schmitt RF, Allen JW, Vetelino JF, Parks J, Zhang C (2001) Bulk acoustic wave modes in quartz for sensing measurand-induced mechanical and electrical property changes. Sens Actuators B: Chem 76:95–102

    Article  CAS  Google Scholar 

  17. Thompson M, Kipling A (1991) Thickness-shear-mode acoustic wave sensors in the liquid phase. A review. Analyst 116:881–890

    Article  CAS  Google Scholar 

  18. Lucklum R, Eichelbaum F (2007) Interface circuits for QCM sensors. In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin, pp 3–47

    Google Scholar 

  19. Reed CE, Kanazawa KK, Kaufman JH (1990) Physical description of a viscoelastically loaded at-cut quartz resonator. J Appl Phys 68:1993–2001

    Article  CAS  Google Scholar 

  20. Kanazawa KK, Gordon JG (1985) The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta 175:99–105

    Article  CAS  Google Scholar 

  21. Kanazawa KK, Gordon JG (1985) Frequency of a quartz microbalance in contact with liquid. Anal Chem 1771:1770–1771

    Article  Google Scholar 

  22. Wegener J, Janshoff A, Steinem C (2001) The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Cell Biochem Biophys 34:121–151

    Article  CAS  Google Scholar 

  23. Martin SJ, Granstaff VE, Frye GC (1991) Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem 2281:2272–2281

    Article  Google Scholar 

  24. Buttry DA, Ward MD (1992) Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem Rev 92:1355–1379

    Article  CAS  Google Scholar 

  25. Muramatsu H, Tamiya E, Karube I (1988) Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties. Anal Chem 60:2142–2146

    Article  CAS  Google Scholar 

  26. Bottom VE (1982) Introduction to quartz crystal unit design. Van Nostrand Reinhold Company, New York

    Google Scholar 

  27. Yang M, Thompson M (1993) Multiple chemical information from the thickness shear mode acoustic wave sensor in the liquid phase. Anal Chem 65:1158–1168

    Article  CAS  Google Scholar 

  28. Bandey HL, Martin SJ, Cernosek RW, Hillman AR (1999) Modeling the responses of thickness-shear mode resonators under various loading conditions. Anal Chem 71:2205–2214

    Google Scholar 

  29. Li J, Thielemann C, Reuning U, Johannsmann D (2005) Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode. Biosens Bioelectron 20:1333–1340

    Article  CAS  Google Scholar 

  30. Lin Z, Ward MD (1995) The role of longitudinal waves in quartz crystal microbalance applications in liquids. Anal Chem 67:685–693

    Article  CAS  Google Scholar 

  31. Solartron Analytical, 1260A impedance/gain-phase analyzer. http://www.solartronanalytical.com/our-products/potentiostats/Model-1260A.aspx

  32. Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci U S A 81:3761–3764

    Article  CAS  Google Scholar 

  33. Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366:591–592

    Article  CAS  Google Scholar 

  34. Wegener J, Keese CR, Giaever I (2000) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166

    Article  CAS  Google Scholar 

  35. Park HE, Kim D, Koh HS, Cho S, Sung J-S et al (2011) Real-time monitoring of neural differentiation of human mesenchymal stem cells by electric cell-substrate impedance sensing. Journal of Biomedicine & Biotechnology 2011:485173

    Google Scholar 

  36. Bellotti M, Bast W, Berra A, Bonetto FJ (2011) Effects of osmolarity on human epithelial conjunctival cells using an electrical technique. Graefe’s Arch Clin Exp Ophthalmol 249:1875–1882

    Article  Google Scholar 

  37. Hug TS (2003) Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assay Drug Dev Technol 1:479–488

    Article  CAS  Google Scholar 

  38. Xiao C, Luong JHT (2003) On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol Prog 19:1000–1005

    Article  CAS  Google Scholar 

  39. Campbell CE, Laane MM, Haugarvoll E, Giaever I (2007) Monitoring viral-induced cell death using electric cell-substrate impedance sensing. Biosens Bioelectron 23:536–542

    Article  CAS  Google Scholar 

  40. Male KB, Lachance B, Hrapovic S, Sunahara G, Luong JHT (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80:5487–5493

    Article  CAS  Google Scholar 

  41. Wiesner C, Pflüger M, Kopecky J, Stys D, Entler B et al (2008) Implementation of ECIS technology for the characterization of potential therapeutic drugs that promote wound-healing. GMS Krankenhaushygiene interdisziplinär 3:1–2

    Google Scholar 

  42. Tarantola M, Schneider D, Sunnick E, Adam H, Pierrat S et al (2009) Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility. ACS Nano 3:213–222

    Article  CAS  Google Scholar 

  43. Opp D, Wafula B, Lim J, Huang E, Lo J-C et al (2009) Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens Bioelectron 24:2625–2629

    Article  CAS  Google Scholar 

  44. Curtis TM, Widder MW, Brennan LM, Schwager SJ, van der Schalie WH et al (2009) A portable cell-based impedance sensor for toxicity testing of drinking water. Lab Chip 9:2176–2183

    Article  CAS  Google Scholar 

  45. Müller J, Thirion C, Pfaffl MW (2011) Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model. Biosens Bioelectron 26:2000–2005

    Article  Google Scholar 

  46. Stolwijk JA, Michaelis S, Wegener J (2012) Cell growth and cell death studied by electric cell-substrate impedance sensing. In: Jiang WG (ed) Electric cell-substrate impedance sensing and cancer metastasis. Springer Netherlands, pp 85–117

    Google Scholar 

  47. Ona T, Shibata J (2010) Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 398:2505–2533

    Article  CAS  Google Scholar 

  48. Asphahani F, Zhang M (2007) Cellular impedance biosensors for drug screening and toxin detection. Analyst 132:835–841

    Article  CAS  Google Scholar 

  49. Arndt S, Seebach J, Psathaki K, Galla H-J, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19:583–594

    Article  CAS  Google Scholar 

  50. Arias LR, Perry Ca, Yang L (2010) Real-time electrical impedance detection of cellular activities of oral cancer cells. Biosens Bioelectron 25:2225–2231

    Article  CAS  Google Scholar 

  51. Tarantola M, Marel AA-K, Sunnick E, Adam H, Wegener J et al (2010) Dynamics of human cancer cell lines monitored by electrical and acoustic fluctuation analysis. Integr Biol 2:139–150

    Article  CAS  Google Scholar 

  52. Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A 88:7896–7900

    Article  CAS  Google Scholar 

  53. Lo C-M, Keese CR, Giaever I (1993) Monitoring motion of confluent cells in tissue culture. Exp Cell Res 204:102–109

    Article  CAS  Google Scholar 

  54. Stolwijk JA (2011) Electric manipulation and impedance analysis of adherent cells on gold-film electrodes. University of Regensburg, Regensburg

    Google Scholar 

  55. Stolwijk JA, Hartmann C, Balani P, Albermann S, Keese CR et al (2011) Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations. Biosens Bioelectron 26:4720–4727

    Article  CAS  Google Scholar 

  56. Wegener J, Keese CR, Giaever I (2002) Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques 33:348–357

    CAS  Google Scholar 

  57. Noiri E, Lee E, Testa J, Quigley J, Colflesh D et al (1998) Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol Cell Physiol 274:C236–C244

    CAS  Google Scholar 

  58. Hong J, Kandasamy K, Marimuthu M, Choi CS, Kim S (2011) Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Analyst 136:237–245

    Article  CAS  Google Scholar 

  59. Heijink IH, Brandenburg SM, Noordhoek JA, Postma DS, Slebos D-J et al (2010) Characterisation of cell adhesion in airway epithelial cell types using electric cell-substrate impedance sensing. Euro Respir J 35:894–903

    Article  CAS  Google Scholar 

  60. Hsu C-C, Tsai W-C, Chen CP-C, Lu Y-M, Wang J-S (2010) Effects of negative pressures on epithelial tight junctions and migration in wound healing. Am J Physiol Cell Physiol 299:C528–C534

    Article  CAS  Google Scholar 

  61. Sharma D, Wang J, Fu PP, Sharma S, Nagalingam A et al (2010) Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis. Hepatology 52:1713–1722

    Article  CAS  Google Scholar 

  62. Argraves KM, Gazzolo PJ, Groh EM, Wilkerson BA, Matsuura BS et al (2008) High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. J Biol Chem 283:25074–25081

    Article  CAS  Google Scholar 

  63. Charrier L, Yan Y, Driss A, Laboisse CL, Sitaraman SV et al (2005) ADAM-15 inhibits wound healing in human intestinal epithelial cell monolayers. Am J Physiol Gastrointest Liver Physiol 288:G346–G353

    Article  CAS  Google Scholar 

  64. Keese CR, Wegener J, Walker SR, Giaever I (2004) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A 101:1554–1559

    Article  CAS  Google Scholar 

  65. Michaelis S, Wegener J, Robelek R (2013) Label-free monitoring of cell-based assays: combining impedance analysis with SPR for multiparametric cell profiling. Biosens Bioelectron 49:63–70

    Article  CAS  Google Scholar 

  66. Steinem C, Janshoff A, Wegener J, Ulrich W-P, Willenbrink W et al (1997) Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosens Bioelectron 12:787–808

    Article  CAS  Google Scholar 

  67. Heitmann V, Reiß B, Wegener J (2007) The quartz crystal microbalance in cell biology: basics and applications. In Eds.: C. Steinem, A. Janshoff) Piezoelectric sensors. Springer, Berlin, pp 303–338

    Google Scholar 

  68. Michaelis S, Robelek R, Wegener J (2012) Studying cell–surface interactions in vitro: a survey of experimental approaches and techniques. In: Kasper C, Witte F, Pörtner R (eds) Tissue engineering III: cell—surface interactions for tissue culture. Springer, Berlin, pp 33–66

    Google Scholar 

  69. Michaelis S (2010) Non-invasive biosensors to characterize the cell-material interface. Westfälische Wilhelms-University Münster, Thesis

    Google Scholar 

  70. Wegener J, Hakvoort A, Galla H-J (2000) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853:115–124

    Article  CAS  Google Scholar 

  71. Reiß B (2004) Mikrogravimetrische Untersuchung Des Adhäsionskontakts Tierischer Zellen: Eine Biophysikalische Studie. Westälische Wilhelms-University Münster, Münster

    Google Scholar 

  72. Janshoff A, Wegener J, Sieber M, Galla H-J (1996) Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J 25:93–103

    Article  CAS  Google Scholar 

  73. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  74. Raptis L, Firth KL (1990) Electroporation of adherent cells in situ. DNA Cell Biol 9:615–621

    Article  CAS  Google Scholar 

  75. Teruel MN, Meyer T (1997) Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells. Biophys J 73:1785–1796

    Article  CAS  Google Scholar 

  76. Raptis LH, Brownell HL, Firth KL, Mackenzie LW (1994) A novel technique for the study of intercellular, junctional communication: electroporation of adherent cells on a partly conductive slide. DNA Cell Biol 13:963–975

    Article  CAS  Google Scholar 

  77. Ghosh PM, Keese CR, Giaever I (1993) Monitoring electropermeabilization in the plasma membrane of adherent mammalian cells. Biophys J 64:1602–1609

    Article  CAS  Google Scholar 

  78. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  79. Coyle LM, Gouterman M (1999) Correcting lifetime measurements for temperature. Sens Actuators B 61:92–99

    Article  CAS  Google Scholar 

  80. Ji H-F, Shen Y, Hubner JP, Carroll BF, Schmehl RH et al (2000) Temperature-independent pressure-sensitive paint based on a bichromophoric luminophore. Appl Spectrosc 54:856–863

    Article  CAS  Google Scholar 

  81. Hradil J, Davis C, Mongey K, Mcdonagh C, Maccraith BD (2002) Temperature-corrected pressure-sensitive paint measurements using a single camera and a dual-lifetime approach. Meas Sci Technol 13:1552–1557

    Article  CAS  Google Scholar 

  82. Woodmansee MA, Dutton JC (1998) Treating temperature-sensitivity effects of pressure-sensitive paint measurements. Exp Fluids 24:163–174

    Article  Google Scholar 

  83. Jablonski A (1935) Über Den Mechanismus Der Photolumineszenz von Farbstoffphosphoren. Zeitschrift für Physik 94:38–46

    Article  CAS  Google Scholar 

  84. Bell JH, Schairer ET, Hand LA, Mehta RD (2001) Surface pressure measurements using luminescent coatings. Annu Rev Fluid Mech 33:155–206

    Article  Google Scholar 

  85. Quaranta M, Borisov SM, Klimant I (2012) Indicators for optical oxygen sensors. Bioanal Rev 4:115–157

    Article  Google Scholar 

  86. Möller D (2003) Luft: Chemie. Physik, Biologie, Reinhaltung, Recht, Walter De Gruyter

    Book  Google Scholar 

  87. Schanze KS, Carroll BF, Korotkevitch S, Morris MJ (1997) Temperature dependence of pressure sensitive paints. AIAA J 35:306–310

    Article  CAS  Google Scholar 

  88. Gouin S, Gouterman M (2000) Ideality of pressure-sensitive paint. II. Effect of annealing on the temperature dependence of the luminescence. J Appl Polym Sci 77:2805–2814

    Article  CAS  Google Scholar 

  89. Woods RJ, Scypinski S, Love LJC, Ashworth HA (1984) Transient digitizer for the determination of microsecond luminescence lifetimes. Anal Chem 56:1395–1400

    Article  CAS  Google Scholar 

  90. Ballew RM, Demas JN (1989) An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal Chem 61:30–33

    Article  CAS  Google Scholar 

  91. Stich MIJ, Wolfbeis OS (2008) Fluorescence sensing and imaging using pressure-sensitive paints and temperature-sensitive paints. In Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I. Springer, Berlin, pp 429–461

    Google Scholar 

  92. Peng H, Stich M, Yu J, Sun L (2010) Luminescent Europium (III) nanoparticles for sensing and imaging of temperature in the physiological range. Adv Mater 22:716–719

    Article  CAS  Google Scholar 

  93. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to image J: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  94. Rasband WS, ImageJ. http://imagej.nih.gov/ij/

  95. Zernike F (1934) Diffraction theory of the knife-edge test and its improved form, the phase-contrast method. Monthly Not R A S 94:377–384

    Article  Google Scholar 

  96. Murphy DB, Oldfield R, Schwartz S, Davidson MW, Introduction to phase contrast microscopy. http://www.microscopyu.com/articles/phasecontrast/phasemicroscopy.html

  97. Phasenkontrast, www.zeiss.de

  98. Abramowitz M, Davidson MW, Introduction to phase contrast, http://www.olympusmicro.com/primer/techniques/phasecontrast/phase.html

  99. Nikon Instruments, Zoom stereomicroscope SMZ 1500. http://www.nikoninstruments.com/en_DE/Products/Microscope-Systems/Stereomicroscopes/SMZ1500/(key_features)

  100. Nothnagle PE, Chambers W, Davidson MW, Introduction to stereomicroscopy. http://www.microscopyu.com/articles/stereomicroscopy/stereointro.html

  101. Minsky M (1961) Microscopy apparatus. U.S. Patent 3013467

    Google Scholar 

  102. Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138

    Article  Google Scholar 

  103. Paddock SW, Fellers TJ, Davidson MW, Confocal microscopy: basic concepts. http://www.microscopyu.com/articles/confocal/confocalintrobasics.html

  104. James TW, Jope C (1978) Visualization by fluorescence of chloroplast DNA in higher plants by means of the DNA-specific probe 4′6-diamidino-2-phenylindole. J Cell Biol 79:623–630

    Article  CAS  Google Scholar 

  105. Kapuscinski J (1979) DAPI: a DNA-specific fluorescent probe. Biotech Histochem 70:220–233

    Article  Google Scholar 

  106. Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A 76:4498–4502

    Article  CAS  Google Scholar 

  107. Faulstich H, Zobeley S, Rinnerthaler G, Small JV (1988) Fluorescent phallotoxins as probes for filamentous actin. J Muscle Res Cell Motil 9:370–383

    Article  CAS  Google Scholar 

  108. Gumbiner B (1987) Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol Cell Physiol 253:C749–C758

    CAS  Google Scholar 

  109. Stevenson BR, Anderson JM, Bullivant S (1988) The epithelial tight junction: structure, function and preliminary biochemical characterization. Mol Cell Biochem 83:129–145

    Article  CAS  Google Scholar 

  110. Papadopoulos NG, Dedoussis GV, Spanakos G, Gritzapis AD, Baxevanis CN et al (1994) An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. J Immunol Methods 177:101–111

    Google Scholar 

  111. Moore PL, MacCoubrey IC, Haugland RP (1990) A rapid, pH insensitive, two color fluorescence viability (cytotoxicity) assay. J Cell Biol 111:58a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Oberleitner .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Oberleitner, M. (2018). Methods and Instrumentation. In: Label-free and Multi-parametric Monitoring of Cell-based Assays with Substrate-embedded Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45384-2_3

Download citation

Publish with us

Policies and ethics