Skip to main content

Science-Related Outcomes: Attitudes, Motivation, Value Beliefs, Strategies

  • Chapter
  • First Online:
Assessing Contexts of Learning

Abstract

Besides fostering science achievement, developing positive science-related attitudes is also an important educational goal. Students need to learn to value science, develop an interest in science, and establish positive science-related self-views. Achieving these multidimensional goals enables students to participate in a society based on scientific reasoning, and influences their educational and professional career choices. This is of high significance because the shortage of skilled workers in specific technical and science professions such as engineering and physical science—especially among females—has become a concern in recent years, and is expected to worsen in the future. This chapter provides an overview of important science-related outcomes (e.g., interest in science, enjoyment of science, instrumental motivation, self-concept, self-efficacy, perceived value of science, self-regulation strategies, epistemological beliefs, technology- and environment-related attitudes, career aspirations) and their research backgrounds. However, for international large-scale assessment (ILSA) studies such as the Programme for International Student Assessment (PISA), there are limitations; and selection criteria arise from study characteristic features. These criteria and limitations are discussed, and this chapter describes how ILSAs have covered the topic of science-related attitudes. On the basis of the above considerations, the selected constructs for the PISA 2015 field trial are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter expands on a technical paper that was presented to the PISA 2015 Questionnaire Expert Group (QEG) in May 2012 (Doc. QEG 2012–05 Doc 06).

References

  • Ainley, M., & Ainley, J. (2011a). Student engagement with science in early adolescence: The contribution of enjoyment to students’ continuing interest in learning about science: Students’ emotions and academic engagement. Contemporary Educational Psychology, 36, 4–12. doi:10.1016/j.cedpsych.2010.08.001.

    Article  Google Scholar 

  • Ainley, M., & Ainley, J. (2011b). A cultural perspective on the structure of student interest in science. International Journal of Science Education, 33, 51–71. doi:10.1080/09500693.2010.518640.

    Article  Google Scholar 

  • Akerson, V. L., & Donnelly, L. A. (2008). Relationships among learner characteristics and preservice elementary teachers’ views of nature of science. Journal of Elementary Science Education, 20, 45–58. doi:10.1007/BF03174702.

    Article  Google Scholar 

  • Aktionsrat Bildung. (2015). Bildung: Mehr als Fachlichkeit [Education: More than subject-matter knowledge]. Wiesbaden: VS Verlag für Sozialwissenschaften.

    Google Scholar 

  • Almlund, M., Duckworth, A. L., Heckman, J., & Kautz, T. (2011). Personality psychology and economics. Cambridge, MA: National Bureau of Economic Research.

    Book  Google Scholar 

  • Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2010). “Doing” science versus “being” a scientist: Examining 10/11-year-old schoolchildren’s constructions of science through the lens of identity. Science Education, 94, 617–639. doi:10.1002/sce.20399.

    Article  Google Scholar 

  • Artelt, C., & Neuenhaus, N. (2010). Metakognition und Leistung [Metacognition and achievement]. In W. Bos, O. Köller, & E. Klieme (Eds.), Schulische Lerngelegenheiten und Kompetenzentwicklung [Learning opportunities in school and the development of competencies] (pp. 127–146). Münster: Waxmann.

    Google Scholar 

  • Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191–215. doi:10.1037//0033-295X.84.2.191.

    Article  Google Scholar 

  • Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28, 117–148. doi:10.1207/s15326985ep2802_3.

    Article  Google Scholar 

  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H. Freeman.

    Google Scholar 

  • Bertling, J. P., Marksteiner, T., & Kyllonen, P. C. (2016). General noncognitive outcomes. In S. Kuger, E. Klieme, N. Jude, & D. Kaplan (Eds.), Assessing contexts of learning: An international perspective. Dordrecht: Springer.

    Google Scholar 

  • Bøe, M. V. (2012). Science choices in Norwegian upper secondary school: What matters? Science Education, 96, 1–20. doi:10.1002/sce.20461.

    Article  Google Scholar 

  • Boekaerts, M. (1999). Self-regulated learning: Where we are today. International Journal of Educational Research, 31, 445–457. doi:10.1016/s0883-0355(99)00014-2.

    Article  Google Scholar 

  • Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really? Educational Psychology Review, 15(1), 1–40.

    Article  Google Scholar 

  • Bong, M., Cho, C., Ahn, H. S., & Kim, H. J. (2012). Comparison of self-beliefs for predicting student motivation and achievement. The Journal of Educational Research, 105, 336–352. doi:10.1080/00220671.2011.627401.

    Article  Google Scholar 

  • Breakwell, G. M., & Beardsell, S. (1992). Gender, parental and peer influences upon science attitudes and activities. Public Understanding of Science, 1, 183–197. doi:10.1088/0963-6625/1/2/003.

    Article  Google Scholar 

  • Buccheri, G., Gürber, N. A., & Brühwiler, C. (2011). The impact of gender on interest in science topics and the choice of scientific and technical vocations. International Journal of Science Education, 33, 159–178. doi:10.1080/09500693.2010.518643.

    Article  Google Scholar 

  • Bybee, R. W. (1997). Towards an understanding of scientific literacy. In W. Gräber & C. Bolte (Eds.), Scientific literacy: An international symposium (pp. 37–68). Kiel: Institut für die Padagogik der Naturwissenschaften (IPN).

    Google Scholar 

  • Bybee, R., & McCrae, B. (2011). Scientific literacy and student attitudes: Perspectives from PISA 2006 science. International Journal of Science Education, 33, 7–26. doi:10.1080/09500693.2010.518644.

    Article  Google Scholar 

  • Chen, C. Y., & Hong, R. Y. (2010). Intolerance of uncertainty moderates the relation between negative life events and anxiety. Personality and Individual Differences, 49, 49–53. doi:10.1016/j.paid.2010.03.006.

    Article  Google Scholar 

  • Christidou, V. (2011). Interest, attitudes and images related to science: Combining students’ voices with the voices of school science, teachers, and popular science. International Journal of Environmental and Science Education, 6, 141–159. doi:10.1111/j.1949-8594.1934.tb10816.x.

    Google Scholar 

  • Corral-Verdugo, V. (2002). A structural model of proenvironmental competency. Environment and Behavior, 34, 531–549. doi:10.1177/00116502034004008.

    Article  Google Scholar 

  • Croll, P. (2008). Occupational choice, socio‐economic status and educational attainment: A study of the occupational choices and destinations of young people in the British household panel survey. Research Papers in Education, 23, 243–268. doi:10.1080/02671520701755424.

    Article  Google Scholar 

  • Dalbert, C. (1999). Die Ungewißheitstoleranzskala: Skaleneigenschaften und Validierungsbefunde [The dealing with uncertainty scale: Properties of the scale and validation results] (Hallesche Berichte zur pädagogischen Psychologie, Vol. 1). Halle: Martin-Luther-Univ. Halle-Wittenberg. http://nbn-resolving.de/urn:nbn:de:gbv:3:2-4553. Accessed 6 June 2016.

  • de Bilde, J., Vansteenkiste, M., & Lens, W. (2011). Understanding the association between future time perspective and self-regulated learning through the lens of self-determination theory. Learning and Instruction, 21, 332–344. doi:10.1016/j.learninstruc.2010.03.002.

    Article  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.

    Book  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (Eds.). (2002). Handbook of self-determination research. Rochester: University of Rochester Press.

    Google Scholar 

  • DeWitt, J., & Archer, L. (2015). Who aspires to a science career? A comparison of survey responses from primary and secondary school students. International Journal of Science Education, 37, 2170–2192. doi:10.1080/09500693.2015.1071899.

    Article  Google Scholar 

  • DeWitt, J., Osborne, J., Archer, L., Dillon, J., Willis, B., & Wong, B. (2013). Young children’s aspirations in science: The unequivocal, the uncertain and the unthinkable. International Journal of Science Education, 35, 1037–1063. doi:10.1080/09500693.2011.608197.

    Article  Google Scholar 

  • Drechsel, B., Carstensen, C., & Prenzel, M. (2011). The role of content and context in PISA interest scales: A study of the embedded interest items in the PISA 2006 science assessment. International Journal of Science Education, 33, 73–95. doi:10.1080/09500693.2010.518646.

    Article  Google Scholar 

  • Duncan, S. C. (1993). The role of cognitive appraisal and friendship provisions in adolescents’ affect and motivation toward activity in physical education. Research Quarterly for Exercise and Sport, 64, 314–323. doi:10.1080/02701367.1993.10608816.

    Article  Google Scholar 

  • Dunlap, R. E., Gallup, G. H., & Gallup, A. M. (1993). Of global concern: Results of the health and planet survey. Environment, 35, 33–40. doi:10.1080/00139157.1993.9929122.

    Article  Google Scholar 

  • Eccles, J. (1983). Expectancies, values, and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives (pp. 75–146). San Francisco: Freemann.

    Google Scholar 

  • Eccles, J. S. (1994). Understanding women’s educational and occupational choices: Applying the Eccles et al. model of achievement-related choices. Psychology of Women Quarterly, 18, 585–609. doi:10.1111/j.1471-6402.1994.tb01049.x.

    Article  Google Scholar 

  • Eccles, J. S. (2011). Understanding educational and occupational choices. Journal of Social Issues, 67, 644–648. doi:10.1111/j.1540-4560.2011.01718.x.

    Article  Google Scholar 

  • Eccles, J. S., & Wigfield, A. (1995). In the mind of the actor: The structure of adolescents’ achievement task values and expectancy-related beliefs. Personality and Social Psychology Bulletin, 21, 215–225. doi:10.1177/0146167295213003.

    Article  Google Scholar 

  • Eddy, R. M. (2000). Chemophobia in the college classroom: Extent, sources, and student characteristics. Journal of Chemical Education, 77, 514. doi:10.1021/ed077p514.

    Article  Google Scholar 

  • Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1, 3–14. doi:10.1016/j.edurev.2005.11.001.

    Article  Google Scholar 

  • Efklides, A. (2008). Metacognition. Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13, 277–287. doi:10.1027/1016-9040.13.4.277.

    Article  Google Scholar 

  • European Commission. (2006). Science education now: A renewed pedagogy for the future of Europe. Brussels: European Commission Directorate-General for Research. http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf. Accessed 6 June 2016.

    Google Scholar 

  • European Commission. (2011). Science education in Europe: National policies, practices and research. Brussels: Education Audiovisual and Culture Executive Agency EACEA P9 Eurydice and Policy Support. http://eacea.ec.europa.eu/education/eurydice/documents/thematic_reports/133EN.pdf. Accessed 6 June 2016.

    Google Scholar 

  • European Commission. (2013). Spezial Eurobaromter 401: Verantwortliche Forschung und Innovation, Wissenschaft und Technologie [Special Eurobarometer 401: Responsible research and innovation, science and technology]. http://ec.europa.eu/public_opinion/archives/ebs/ebs_401_de.pdf. Accessed 6 June 2016.

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906–911. doi:10.1037/0003-066X.34.10.906.

    Article  Google Scholar 

  • Flavell, J. H., Miller, P. H., & Miller, S. A. (2002). Cognitive development (4th ed.). Saddle River: Prentice Hall.

    Google Scholar 

  • Fleener, M. J. (1996). Scientific world building on the edge of chaos: High school students’ beliefs about mathematics and science. School Science and Mathematics, 96, 312–320. doi:10.1111/j.1949-8594.1996.tb15841.x.

    Article  Google Scholar 

  • Frick, J., Kaiser, F. G., & Wilson, M. (2004). Environmental knowledge and conservation behavior: Exploring prevalence and structure in a representative sample. Personality and Individual Differences, 37, 1597–1613. doi:10.1016/j.paid.2004.02.015.

    Article  Google Scholar 

  • Furman, W., & Buhrmester, D. (1992). Age and sex differences in perceptions of networks of personal relationships. Child Development, 63, 103. doi:10.2307/1130905.

    Article  Google Scholar 

  • Gardner, P. L. (1975). Attitudes to science: A review. Studies in Science Education, 2, 1–41. doi:10.1080/03057267508559818.

    Article  Google Scholar 

  • Gifford, R., Scannell, L., Kormos, C., Smolova, L., Biel, A., Boncu, S., & Uzzell, D. (2009). Temporal pessimism and spatial optimism in environmental assessments: An 18-nation study. Journal of Environmental Psychology, 29, 1–12. doi:10.1016/j.jenvp.2008.06.001.

    Article  Google Scholar 

  • Gungor, A., Eryılmaz, A., & Fakıoglu, T. (2007). The relationship of freshmen’s physics achievement and their related affective characteristics. Journal of Research in Science Teaching, 44, 1036–1056. doi:10.1002/tea.20200.

    Article  Google Scholar 

  • Haeussler, P., & Hoffmann, L. (2000). A curricular frame for physics education: Development, comparison with students’ interests, and impact on students’ achievement and self-concept. Science Education, 84, 689–705. doi:10.1002/1098-237X(200011)84:6<689::AID-SCE1>3.0.CO;2-L.

    Article  Google Scholar 

  • Hannover, B., & Kessels, U. (2004). Self-to-prototype matching as a strategy for making academic choices: Why high school students do not like math and science. Learning and Instruction, 14, 51–67. doi:10.1016/j.learninstruc.2003.10.002.

    Article  Google Scholar 

  • Harland, P., Staats, H., & Wilke, H. A. (1999). Explaining proenvironmental intention and behavior by personal norms and the theory of planned behavior. Journal of Applied Social Psychology, 29, 2505–2528. doi:10.1111/j.1559-1816.1999.tb00123.x.

    Article  Google Scholar 

  • Heckhausen, H. (1991). Motivation and action. Berlin: Springer.

    Book  Google Scholar 

  • Heckman, J., Stixrud, J., & Urzua, S. (2006). The effects of cognitive and noncognitive abilities on labor market outcomes and social behavior. Cambridge, MA: National Bureau of Economic Research.

    Book  Google Scholar 

  • Heine, S. J., Lehman, D. R., Peng, K., & Greenholtz, J. (2002). What’s wrong with cross-cultural comparisons of subjective Likert scales? The reference-group effect. Journal of Personality and Social Psychology, 82, 903–918. doi:10.1037/0022-3514.82.6.903.

    Article  Google Scholar 

  • Helmke, A., & van Aken, M. A. (1995). The causal ordering of academic achievement and self-concept of ability during elementary school: A longitudinal study. Journal of Educational Psychology, 87, 624–637. doi:10.1037/0022-0663.87.4.624.

    Article  Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67, 88–140. doi:10.3102/00346543067001088.

    Article  Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (2002). Personal epistemology: The psychology of beliefs about knowledge and knowing. Mahwah: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Homburg, A., & Matthies, E. (1998). Umweltpsychologie: Umweltkrise, Gesellschaft und Individuum: Grundlagentexte Psychologie [Environmental psychology: Ecological crisis, society, and the individual]. Weinheim: Juventa-Verlag.

    Google Scholar 

  • International Labour Office. (2012). International standard classification of occupations ISCO-08. Genf: ILO.

    Google Scholar 

  • Jakobs, E. M., Renn, O., & Weingart, P. (2009). Technik und Gesellschaft. In J. Milberg (Ed.), Förderung des Nachwuchses in Technik und Naturwissenschaft (pp. 219–267). Berlin: Springer.

    Chapter  Google Scholar 

  • Jansen, M., Schroeders, U., & Lüdtke, O. (2014). Academic self-concept in science: Multidimensionality, relations to achievement measures, and gender differences. Learning and Individual Differences, 30, 11–21. doi:10.1016/j.lindif.2013.12.003.

    Article  Google Scholar 

  • Jansen, M., Scherer, R., & Schroeders, U. (2015a). Students’ self-concept and self-efficacy in the sciences: Differential relations to antecedents and educational outcomes. Contemporary Educational Psychology, 41, 13–24. doi:10.1016/j.cedpsych.2014.11.002.

    Article  Google Scholar 

  • Jansen, M., Schroeders, U., Lüdtke, O., & Marsh, H. W. (2015b). Contrast and assimilation effects of dimensional comparisons in five subjects: An extension of the I/E model. Journal of Educational Psychology, 107, 1086–1101. doi:10.1037/edu0000021.

    Article  Google Scholar 

  • Jones, A. T., & Kirk, C. M. (1990). Introducing technological applications into the physics classroom: Help or hindrance for learning? International Journal of Science Education, 12, 481–490. doi:10.1080/0950069900120502.

    Article  Google Scholar 

  • Jude, N. (2016). The assessment of learning contexts in PISA. In S. Kuger, E. Klieme, N. Jude, & D. Kaplan (Eds.), Assessing contexts of learning: An international perspective. Dordrecht: Springer.

    Google Scholar 

  • Kaiser, F. G., Wölfing, S., & Fuhrer, U. (1999). Environmental attitude and ecological behaviour. Journal of Environmental Psychology, 19, 1–19. doi:10.1006/jevp.1998.0107.

    Article  Google Scholar 

  • Kals, E. (1996). Are proenvironmental commitments motivated by health concerns or by perceived justice? In M. J. Lerner, R. Vermunt, & L. Montada (Eds.), Critical issues in social justice: Current societal concerns about justice (pp. 231–258). Boston: Springer US.

    Chapter  Google Scholar 

  • Kautz, T., Heckman, J. J., Diris, R., ter Weel, B., & Borghans, L. (2014). Fostering and measuring skills: Improving cognitive and noncognitive skills to promote lifetime success. Paris: OECD Publishing.

    Book  Google Scholar 

  • Kerr, K., & Murphy, C. (2012). Children’s attitudes to primary science. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education: Volume 1 (pp. 627–649). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Kessels, U. (2005). Fitting into the stereotype: How gender-stereotyped perceptions of prototypic peers relate to liking for school subjects. European Journal of Psychology of Education, 20, 309–323. doi:10.1007/bf03173559.

    Article  Google Scholar 

  • Kessels, U., & Hannover, B. (2004). Empfundene “Selbstnähe” als Mediator zwischen Fähigkeitsselbstkonzept und Leistungskurswahlintentionen [Self-closeness: A mediator between self-concept of ability and major subject course selection intentions]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 36, 130–138. doi:10.1026/0049-8637.36.3.130.

    Article  Google Scholar 

  • Kessels, U., & Hannover, B. (2007). How the image of math and science affects the development of academic interests. In M. Prenzel (Ed.), Studies on the educational quality of schools: The final report on the DFG priority programme (pp. 283–297). Münster: Waxmann.

    Google Scholar 

  • Kessels, U., & Taconis, R. (2012). Alien or alike? How the perceived similarity between the typical science teacher and a student’s self-image correlates with choosing science at school. Research in Science Education, 42, 1049–1071. doi:10.1007/s11165-011-9230-9.

    Article  Google Scholar 

  • Kessels, U., Rau, M., & Hannover, B. (2006). What goes well with physics? Measuring and altering the image of science. British Journal of Educational Psychology, 76, 761–780. doi:10.1348/000709905X59961.

    Article  Google Scholar 

  • Kind, P., & Osborne, J. (in press). Styles of scientific reasoning—A cultural rationale for science education. Science Education.

    Google Scholar 

  • Kjærnsli, M., & Lie, S. (2011). Students’ preference for science careers: International comparisons based on PISA 2006. International Journal of Science Education, 33, 121–144. doi:10.1080/09500693.2010.518642.

    Article  Google Scholar 

  • Klopfer, L. E. (1971). Evaluation of learning in science. In B. S. Bloom, J. T. Hastings, & G. F. Madaus (Eds.), Handbook on formative and summative evaluation of student learning (pp. 559–641). New York: McGraw-Hill.

    Google Scholar 

  • Köller, O., Baumert, J., & Schnabel, K. (2000). Zum Zusammenspiel von schulischen Interessen und Lernen im Fach Mathematik: Längsschnittanalysen in der Sekundarstufe I und II [For interaction of academic interests and learning in mathematics: Longitudinal analysis in the lower and upper secondary]. In U. Schiefele & K. P. Wild (Eds.), Interesse und Lernmotivation: Neue Studien zu Entwicklung und Wirkungen (pp. 163–182). Münster: Waxmann.

    Google Scholar 

  • Kollmuss, A., & Agyeman, J. (2002). Mind the gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environmental Education Research, 8, 239–260. doi:10.1080/13504620220145401.

    Article  Google Scholar 

  • Krapp, A. (2002a). An educational-psychological theory of interest and its relation to self-determination theory. In E. L. Deci & R. M. Ryan (Eds.), Handbook of self-determination research (pp. 405–427). Rochester: University of Rochester Press.

    Google Scholar 

  • Krapp, A. (2002b). Structural and dynamic aspects of interest development: Theoretical considerations from an ontogenetic perspective: Interest in learning, learning to be interested. Learning and Instruction, 12, 383–409. doi:10.1016/S0959-4752(01)00011-1.

    Article  Google Scholar 

  • Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33, 27–50. doi:10.1080/09500693.2010.518645.

    Article  Google Scholar 

  • Kuger, S. (2016). Curriculum and learning time in international school achievement studies. In S. Kuger, E. Klieme, N. Jude, & D. Kaplan (Eds.), Assessing contexts of learning: An international perspective. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kuger, S., Jude, N., Klieme, E., & Kaplan, D. (2016). An introduction to the PISA 2015 field trial: Study design and analyses procedures. In S. Kuger, E. Klieme, N. Jude, & D. Kaplan (Eds.), Assessing contexts of learning: An international perspective. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Laukenmann, M., Bleicher, M., Fuß, S., Gläser-Zikuda, M., Mayring, P., & von Rhöneck, C. (2003). An investigation of the influence of emotional factors on learning in physics instruction. International Journal of Science Education, 25, 489–507. doi:10.1080/09500690210163233.

    Article  Google Scholar 

  • Mallow, J., Kastrup, H., Bryant, F. B., Hislop, N., Shefner, R., & Udo, M. (2010). Science anxiety, science attitudes, and gender: Interviews from a binational study. Journal of Science Education and Technology, 19, 356–369. doi:10.1007/s10956-010-9205-z.

    Article  Google Scholar 

  • Mandl, H., & Friedrich, H. F. (Ed.) (2006). Handbuch Lernstrategien [Handbook of learning strategies]. Göttingen: Hogrefe.

    Google Scholar 

  • Marsh, H. W. (2007). Self-concept theory, measurement and research into practice: The role of self-concept in educational psychology (Vernon-Wall lecture, Vol. 25). Leicester: British Psychological Society.

    Google Scholar 

  • Martin, M. O., Mullis, I., Foy, P., & Stanco, G. M. (2012). TIMSS 2011 international results in science. Chestnut Hill: TIMSS & PIRLS International Study Center, Boston College.

    Google Scholar 

  • Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future: A report with ten recommendations. London: King’s College London, School of Education.

    Google Scholar 

  • Morin, O., Simonneaux, L., Simonneaux, J., Tytler, R., & Barraza, L. (2014). Developing and using an S3R model to analyze reasoning in web-based cross-national exchanges on sustainability. Science Education, 98, 517–542. doi:10.1002/sce.21113.

    Article  Google Scholar 

  • Müller, K., Prenzel, M., Seidel, T., Schiepe-Tiska, A., & Kjærnsli, M. (2016). Science teaching and learning in schools: Theoretical and empirical foundations for investigating classroom-level processes. In S. Kuger, E. Klieme, N. Jude, & D. Kaplan (Eds.), Assessing contexts of learning: An international perspective. Dordrecht: Springer.

    Google Scholar 

  • National Center for Education Statistics. (2009). Students who study science, technology, engineering, and mathematics (STEM) in postsecondary education. Washington, DC: U.S. Department of Education, Institute for Education Sciences.

    Google Scholar 

  • National Research Council (US). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

    Google Scholar 

  • Neyer, F. J., Felber, J., & Gebhardt, C. (2012). Entwicklung und Validierung einer Kurzskala zur Erfassung von Technikbereitschaft [Development and validation of a brief measure of technology commitment]. Diagnostica, 58, 87–99. doi:10.1026/0012-1924/a000067.

    Article  Google Scholar 

  • Nisbet, E. K., Zelenski, J. M., & Murphy, S. A. (2009). The nature relatedness scale: Linking individuals’ connection with nature to environmental concern and behavior. Environment and Behavior, 41, 715–740. doi:10.1177/0013916508318748.

    Article  Google Scholar 

  • OECD. (2006). Assessing scientific, reading and mathematical literacy. A framework for PISA 2006. Paris: OECD Publishing.

    Google Scholar 

  • OECD. (2007). PISA 2006: Science competencies for tomorrow’s world. Paris: OECD Publishing.

    Book  Google Scholar 

  • OECD. (2008). Encouraging student interest in science and technology studies. Paris: OECD Publishing.

    Google Scholar 

  • OECD. (2009). Green at fifteen? Paris: OECD Publishing.

    Book  Google Scholar 

  • OECD. (2016). PISA 2015 Assessment and Analytical Framework. Science, reading, mathematic, and financial literacy. Paris: OECD Publishing.

    Book  Google Scholar 

  • Olsen, R. V., & Lie, S. (2011). Profiles of students’ interest in science issues around the world: Analysis of data from PISA 2006. International Journal of Science Education, 33, 97–120. doi:10.1080/09500693.2010.518638.

    Article  Google Scholar 

  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25, 1049–1079. doi:10.1080/0950069032000032199.

    Article  Google Scholar 

  • Pajares, F., Britner, S. L., & Valiante, G. (2000). Relation between achievement goals and self-beliefs of middle school students in writing and science. Contemporary Educational Psychology, 25, 406–422. doi:10.1006/ceps.1999.1027.

    Article  Google Scholar 

  • Parker, P. D., Marsh, H. W., Ciarrochi, J., Marshall, S., & Abduljabbar, A. S. (2014). Juxtaposing math self-efficacy and self-concept as predictors of long-term achievement outcomes. Educational Psychology, 34, 29–48. doi:10.1080/01443410.2013.797339.

    Article  Google Scholar 

  • Patrick, H., Ryan, A. M., Alfeld-Liro, C., Fredricks, J. A., Hruda, L. Z., & Eccles, J. S. (1999). Adolescents’ commitment to developing talent: The role of peers in continuing motivation for sports and the arts. Journal of Youth and Adolescence, 28, 741–763. doi:10.1023/A:1021643718575.

    Article  Google Scholar 

  • Pekrun, R. (2000). A social-cognitive, control-value theory of achievement emotions. In J. Heckhausen (Ed.), Advances in psychology, No. 131: Motivational psychology of human development. Developing motivation and motivating development (pp. 143–163). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18, 315–341. doi:10.1007/s10648-006-9029-9.

    Article  Google Scholar 

  • Pekrun, R. (2014). Emotions and learning. Belgium: International Bureau of Education. http://www.ibe.unesco.org/fileadmin/user_upload/Publications/Educational_Practices/EdPractices_24eng.pdf. Accessed 6 June 2016.

    Google Scholar 

  • Pekrun, R., & Linnenbrink-Garcia, L. (2014). Handbook of emotions in education. New York: Francis & Taylor/Routledge.

    Google Scholar 

  • Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37, 91–105. doi:10.1207/S15326985EP3702_4.

    Article  Google Scholar 

  • Perera, L. D. (2014). Parents’ attitudes towards science and their children’s science achievement. International Journal of Science Education, 36, 3021–3041. doi:10.1080/09500693.2014.949900.

    Article  Google Scholar 

  • Renn, O. (2008). Wie aufgeschlossen sind die Deutschen gegenüber Technik? Ergebnisse der Akzeptanz- und Modernisierungsforschung [How open are Germans towards technology? Results of acceptance and modernization research]. Themenheft Forschung: Kultur und Technik, 4. http://www.uni-stuttgart.de/hkom/publikationen/themenheft/04/deutschen_gegeueber_d.technik.pdf. Accessed 6 June 2016.

  • Renninger, K. A., Nieswandt, M., & Hidi, S. (Eds.). (2015). Interest in mathematics and science learning. Washington, DC: American Educational Research Association.

    Google Scholar 

  • Rheinberg, F. (2008). Intrinsic motivation and flow-experience. In J. Heckhausen & H. Heckhausen (Eds.), Motivation and action (pp. 323–348). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Rosenberg, M. J., & Hovland, C. I. (1960). Cognitive, affective, and behavioral components of attitudes. In M. J. Rosenberg, C. I. Hovland, W. J. McGuire, R. P. Abelson, & J. W. Brehm (Eds.), Attitude organization and change: An analysis of consistency among attitude components (pp. 1–14). New Haven: Yale University Press.

    Google Scholar 

  • Ryan, R., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 54–67. doi:10.1006/ceps.1999.1020.

    Article  Google Scholar 

  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89, 634–656. doi:10.1002/sce.20065.

    Article  Google Scholar 

  • Schneider, B., Krajcik, J., Lavonen, J., Salmela‐Aro, K., Broda, M., Spicer, J., & Viljaranta, J. (2015). Investigating optimal learning moments in U.S. and Finnish science classes. Journal of Research in Science Teaching, 53, 400–421. doi:10.1002/tea.21306.

    Article  Google Scholar 

  • Schwartz, S. H. (1973). Normative explanations of helping behavior: A critique, proposal, and empirical test. Journal of Experimental Social Psychology, 9, 349–364. doi:10.1016/0022-1031(73)90071-1.

    Article  Google Scholar 

  • Seeber, S., & Michaelis, C. (2014). Development of a model of competencies required for sustainable economic performance among apprentices in business education. Sig Workplace Learning, Paper Session, April 4, 2014, AERA annual meeting, Philadelphia/Pennsylvania, April 3–7.

    Google Scholar 

  • Shen, C., & Tam, H. (2008). The paradoxical relationship between student achievement and self-perception: A cross-national analysis based on three waves of TIMSS data. Educational Research and Evaluation, 14, 87–100. doi:10.1080/13803610801896653.

    Article  Google Scholar 

  • Simpson, R. D., & Oliver, S. J. (1990). A summary of major influences on attitude toward and achievement in science among adolescent students. Science Education, 74, 1–18. doi:10.1002/sce.3730740102.

    Article  Google Scholar 

  • Sjøberg, S., & Schreiner, C. (2007). Perceptions and images of science and science education. In M. Claessens (Ed.), Communicating European research 2005 (pp. 151–158). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Stadtler, M., Scharrer, L., Brummernhenrich, B., & Bromme, R. (2013). Dealing with uncertainty: Readers’ memory for and use of conflicting information from science texts as function of presentation format and source expertise. Cognition and Instruction, 31, 130–150. doi:10.1080/07370008.2013.769996.

    Article  Google Scholar 

  • Stake, J. E., & Nickens, S. D. (2005). Adolescent girls’ and boys’ science peer relationships and perceptions of the possible self as scientist. Sex Roles, 52, 1–11. doi:10.1007/s11199-005-1189-4.

    Article  Google Scholar 

  • Stern, P. C. (2000). New environmental theories: Toward a coherent theory of environmentally significant behavior. Journal of Social Issues, 56, 407–424. doi:10.1111/0022-4537.0017.

    Article  Google Scholar 

  • Sun, L., Bradley, K. D., & Akers, K. (2012). A multilevel modelling approach to investigating factors impacting science achievement for secondary school students: PISA Hong Kong sample. International Journal of Science Education, 34, 2107–2125. doi:10.1080/09500693.2012.708063.

    Article  Google Scholar 

  • Szagun, G., & Pavlov, V. I. (1995). Environmental awareness: A comparative study of German and Russian adolescents. Youth & Society, 27, 93–112. doi:10.1177/0044118X95027001006.

    Article  Google Scholar 

  • Taconis, R., & Kessels, U. (2009). How choosing science depends on students’ individual fit to “science culture”. International Journal of Science Education, 31, 1115–1132. doi:10.1080/09500690802050876.

    Article  Google Scholar 

  • Tai, R. H., Qi Liu, C., Maltese, A. V., & Fan, X. (2006). Career choice: Planning early for careers in science. Science, 312, 1143–1144. doi:10.1126/science.1128690.

    Article  Google Scholar 

  • Taskinen, P., Asseburg, R., & Walter, O. (2008). Wer möchte später einen naturwissenschafts-bezogenen oder technischen Beruf ergreifen? Berufserwartungen und Schülermerkmale in PISA 2006 [Who wants to get a science- or technology-related job later? Career expectations and student outcomes in PISA 2006]. Zeitschrift für Erziehungswissenschaft, 11, 79–106.

    Google Scholar 

  • Taskinen, P. H., Schütte, K., & Prenzel, M. (2013). Adolescents’ motivation to select an academic science-related career: The role of school factors, individual interest, and science self-concept. Educational Research and Evaluation, 19, 717–733. doi:10.1080/13803611.2013.853620.

    Article  Google Scholar 

  • Tenenbaum, H. R., & Leaper, C. (2003). Parent-child conversations about science: The socialization of gender inequities? Developmental Psychology, 39, 34–47. doi:10.1037/0012-1649.39.1.34.

    Article  Google Scholar 

  • Thielsch, C., Andor, T., & Ehring, T. (2015). Do metacognitions and intolerance of uncertainty predict worry in everyday life? An ecological momentary assessment study. Behavior Therapy, 46, 532–543. doi:10.1016/j.beth.2015.05.001.

    Article  Google Scholar 

  • Thomas, G. P. (2012). Metacognition in science education: Past, present and future considerations. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education: Volume 1 (pp. 131–144). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Treiman, D. (1977). Occupational prestige in comparative perspective. New York: Academic.

    Google Scholar 

  • Tytler, R., & Osborne, J. (2012). Student attitudes and aspirations towards science. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education: Volume 1 (pp. 597–625). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • UNEP (2015). The United Nations environment programme and the 2030 agenda: Global action for people and the planet. http://www.unep.org/pdf/UNEP_and_the_2030_Agenda.pdf. Accessed 6 June 2016.

  • Uzzel, D. L. (2000). The psycho-spatial dimension of global environmental problems. Journal of Environmental Psychology, 20, 307–318. doi:10.1006/jevp.2000.0175.

    Article  Google Scholar 

  • Valentine, J. C., DuBois, D. L., & Cooper, H. (2004). The relation between self-beliefs and academic achievement: A meta-analytic review. Educational Psychologist, 39, 111–133. doi:10.1207/s15326985ep3902_3.

    Article  Google Scholar 

  • van de Gaer, E., Grisay, A., Schulz, W., & Gebhardt, E. (2012). The reference group effect: An explanation of the paradoxical relationship between academic achievement and self-confidence across countries. Journal of Cross-Cultural Psychology, 43, 1205–1228. doi:10.1177/0022022111428083.

    Article  Google Scholar 

  • Van de Vijver, F. J. R., & He, J. (2016). Bias assessment and prevention in noncognitive outcome measures in context assessments. In S. Kuger, E. Klieme, N. Jude, & D. Kaplan (Eds.), Assessing contexts of learning: An international perspective. Dordrecht: Springer.

    Google Scholar 

  • Veenman, M. V. (2011). Learning to self-monitor and self-regulate. In P. A. Alexander & R. E. Mayer (Eds.), Educational psychology handbook series: Handbook of research on learning and instruction (pp. 197–218). New York: Routledge.

    Google Scholar 

  • Wang, M. T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24, 770–775. doi:10.1177/0956797612458937.

    Article  Google Scholar 

  • Webster, D. M., & Kruglanski, A. W. (1997). Cognitive and social consequences of the need for cognitive closure. European Review of Social Psychology, 8, 133–173. doi:10.1080/14792779643000100.

    Article  Google Scholar 

  • Whitebread, D., Coltman, P., Pasternak, D. P., Sangster, C., Grau, V., Bingham, S., & Demetriou, D. (2009). The development of two observational tools for assessing metacognition and self-regulated learning in young children. Metacognition and Learning, 4, 63–85. doi:10.1007/s11409-008-9033-1.

    Article  Google Scholar 

  • Wigfield, A., Eccles, J. S., & Rodriguez, D. (1998). The development of children’s motivation in school contexts. Review of Research in Education, 23, 73–118. doi:10.2307/1167288.

    Google Scholar 

  • Yang, F. Y., & Tsai, C. C. (2012). Personal epistemology and science learning: A review on empirical studies. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education: Volume 1 (pp. 259–280). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Zhou, X. (2005). The institutional logic of occupational prestige ranking: Reconceptualization and reanalyses 1. American Journal of Sociology, 111, 90–140. doi:10.1086/428687.

    Article  Google Scholar 

  • Ziefle, M., & Jakobs, E. M. (2009). Wege zu Technikfaszination: Sozialisationsverläufe und Interventionszeitpunkte. Berlin: Springer.

    Book  Google Scholar 

  • Zimmerman, B. J. (1989). Models of self-regulated learning and academic achievement. In C. J. Brainerd, B. J. Zimmerman, & D. H. Schunk (Eds.), Springer series in cognitive development: Self-regulated learning and academic achievement (pp. 1–25). New York: Springer New York.

    Chapter  Google Scholar 

  • Zimmerman, B. (1999). Commentary: Toward a cyclically interactive view of self-regulated learning. International Journal of Educational Research, 31, 545–551.

    Article  Google Scholar 

  • Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: Current and future directions. Studies in Science Education, 49, 121–169. doi:10.1080/03057267.2013.847261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Schiepe-Tiska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schiepe-Tiska, A., Roczen, N., Müller, K., Prenzel, M., Osborne, J. (2016). Science-Related Outcomes: Attitudes, Motivation, Value Beliefs, Strategies. In: Kuger, S., Klieme, E., Jude, N., Kaplan, D. (eds) Assessing Contexts of Learning. Methodology of Educational Measurement and Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-45357-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45357-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45356-9

  • Online ISBN: 978-3-319-45357-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics