Skip to main content

Nitrones, Old Fellows for New Therapies in Ischemic Stroke

  • Chapter
  • First Online:
Neuroprotective Therapy for Stroke and Ischemic Disease

Abstract

Ischemic stroke is suffered by millions of people worldwide, being the second cause of death in 2012. To date, only recombinant tissue plasminogen activator and thrombectomy, as first-line recanalization approaches, are the only treatments approved for ischemic stroke therapy. Nevertheless, the low number of patients who can benefit from this treatment, as well as the limited beneficial outcome, even if proper recanalization rates are achieved, make evident the need for complementary therapeutic approaches. Among them, the neuroprotection strategy appeared as a promising approach which led to the development of drugs targeting distinct steps of the biochemical pathways that take place during and after the ischemic insult. However, no effective translation from preclinical studies to clinical use has been achieved until now, rising thus doubts about the suitability of the neuroprotection therapeutic strategy. Regarding the intrinsic complexity of ischemic stroke, pleiotropy has been proposed as a key issue, and nitrones, known to act as radical traps, have arisen as interesting drug candidates. From its widely known antioxidant behavior, new mechanisms of action have been proposed based on reported evidence. In this chapter, nitrones pleiotropy is reviewed. Specific results of nitrones developed by our group are reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Stroke, Cerebrovascular accident. http://www.who.int/topics/cerebrovascular_accident/en/

  2. World Health Organization (2014) Global health estimates 2014 summary tables: deaths by cause, age and sex, 2000-2012

    Google Scholar 

  3. World Health Organization (2014) Global health estimates 2014 summary tables: DALY by cause, age and sex, 2000-2012

    Google Scholar 

  4. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 24(1):35–41

    Article  PubMed  Google Scholar 

  5. Easton JD, Saver JL, Albers GW, Alberts MJ, Chaturvedi S, Feldmann E et al (2009) Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease: The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke 40(6):2276–2293

    Google Scholar 

  6. Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12(6):723–725

    Article  CAS  PubMed  Google Scholar 

  7. Lassen NA, Fieschi C, Lenzi GL (1991) Ischemic penumbra and neuronal death: comments on the therapeutic window in acute stroke with particular reference to thrombolytic therapy. Cerebrovasc Dis 1(suppl 1):32–35

    Google Scholar 

  8. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Symon L, Branston NM, Strong AJ, Hope TD (1977) The concepts of thresholds of ischaemia in relation to brain structure and function. J Clin Pathol 11(1):s149–s154

    Article  Google Scholar 

  10. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36(4):557–565

    Article  CAS  PubMed  Google Scholar 

  11. Mies G, Ishimaru S, Xie Y, Seo K, Hossmann K-A (1991) Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 11(5):753–761

    Article  CAS  PubMed  Google Scholar 

  12. Paschen W, Mies G, Hossmann KA (1992) Threshold relationship between cerebral blood flow, glucose utilization, and energy metabolites during development of stroke in gerbils. Exp Neurol 117(3):325–333

    Article  CAS  PubMed  Google Scholar 

  13. Siesjö BK (1988) Acidosis and ischemic brain damage. Neurochem Pathol 9(1):31–88

    PubMed  Google Scholar 

  14. Katsura K, Kristián T, Siesjö BK (1994) Energy metabolism, ion homeostasis, and cell damage in the brain. Biochem Soc Trans 22(4):991–996

    Google Scholar 

  15. Schuier FJ, Hossmann KA (1980) Experimental brain infarcts in cats. II. Ischemic brain edema. Stroke 11(6):593–601

    Article  CAS  PubMed  Google Scholar 

  16. Paschen W, Mengesdorf T (2005) Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38(3-4):409–415

    Article  CAS  PubMed  Google Scholar 

  17. Simon RP (2006) Acidotoxicity trumps excitotoxicity in ischemic brain. Arch Neurol 63(10):1368–1371

    Article  PubMed  Google Scholar 

  18. Chen ZL, Strickland S (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91(7):917–925

    Article  CAS  PubMed  Google Scholar 

  19. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11(10):465–469

    Article  CAS  PubMed  Google Scholar 

  20. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87(2):682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Norenberg MD, Rao KVR (2007) The mitochondrial permeability transition in neurologic disease. Neurochem Int 50(7–8):983–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marshall JJ, Kontos HA (1990) Endothelium-derived relaxing factors. A perspective from in vivo data. Hypertension 16(4):371–386

    Article  CAS  PubMed  Google Scholar 

  23. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298(Pt 2):249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iadecola C, Zhang F, Xu S, Casey R, Ross ME (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab 15(3):378–384

    Article  CAS  PubMed  Google Scholar 

  25. Brown GC, Borutaite V (1999) Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp 66:17–25

    Article  CAS  PubMed  Google Scholar 

  26. Kudin AP, Debska-Vielhaber G, Kunz WS (2005) Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomed Pharmacother 59(4):163–168

    Article  CAS  PubMed  Google Scholar 

  27. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13(3):135–160

    Article  CAS  PubMed  Google Scholar 

  28. Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33(6):774–797

    Article  CAS  PubMed  Google Scholar 

  29. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM (1992) Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 267(34):24173–24176

    CAS  PubMed  Google Scholar 

  30. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    Article  CAS  PubMed  Google Scholar 

  31. Jin R, Liu L, Zhang S, Nanda A, Li G (2013) Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 6(5):834–851

    Article  PubMed  Google Scholar 

  32. Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66(3):232–245

    Article  PubMed  Google Scholar 

  33. del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM (1991) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22(10):1276–1283

    Article  PubMed  Google Scholar 

  34. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ (2004) Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35(4):998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chou WH, Choi DS, Zhang H, Mu D, McMahon T, Kharazia VN et al (2004) Neutrophil protein kinase Cdelta as a mediator of stroke-reperfusion injury. J Clin Invest 114(1):49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87(4):1620–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alvarez B, Radi R (2003) Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25(3-4):295–311

    Article  CAS  PubMed  Google Scholar 

  38. Halliwell B, Gutteridge JM (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307(1):108–112

    Article  CAS  PubMed  Google Scholar 

  39. Moskowitz N, Schook W, Puszkin S (1984) Regulation of endogenous calcium-dependent synaptic membrane phospholipase A2. Brain Res 290(2):273–279

    Article  CAS  PubMed  Google Scholar 

  40. Kim H-H, Lee K-H, Lee D, Han Y-E, Lee S-H, Sohn J-W et al (2015) Costimulation of AMPA and metabotropic glutamate receptors underlies phospholipase C activation by glutamate in hippocampus. J Neurosci 35(16):6401–6412

    Article  CAS  PubMed  Google Scholar 

  41. Bazan NG (1976) Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv Exp Med Biol 72:317–335

    Article  CAS  PubMed  Google Scholar 

  42. Wojtczak L, Schonfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183(1):41–57

    Article  CAS  PubMed  Google Scholar 

  43. Anthonymuthu TS, Kenny EM, Bayir H (2016) Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res 1640(Pt A):57–76

    Article  CAS  PubMed  Google Scholar 

  44. Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation-a review. Curr Med Chem 10(17):1723–1740

    Article  CAS  PubMed  Google Scholar 

  45. Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP (1997) A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem 68(1):255–264

    Article  CAS  PubMed  Google Scholar 

  46. Gaudet RJ, Alam I, Levine L (1980) Accumulation of cyclooxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion. J Neurochem 35(3):653–658

    Article  CAS  PubMed  Google Scholar 

  47. Andreyev AY, Fahy B, Fiskum G (1998) Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition. FEBS Lett 439(3):373–376

    Article  CAS  PubMed  Google Scholar 

  48. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53

    Article  CAS  PubMed  Google Scholar 

  49. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17(11):1143–1151

    Article  CAS  PubMed  Google Scholar 

  50. Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F et al (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31(1-3):105–116

    Article  CAS  PubMed  Google Scholar 

  51. Moro MA, Cardenas A, Hurtado O, Leza JC, Lizasoain I (2004) Role of nitric oxide after brain ischaemia. Cell Calcium 36(3-4):265–275

    Article  CAS  PubMed  Google Scholar 

  52. Iadecola C, Forster C, Nogawa S, Clark HB, Ross ME (1999) Cyclooxygenase-2 immunoreactivity in the human brain following cerebral ischemia. Acta Neuropathol 98(1):9–14

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Lo EH (2003) Triggers and mediators of hemorrhagic transformation in cerebral ischemia. Mol Neurobiol 28(3):229–244

    Article  CAS  PubMed  Google Scholar 

  54. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC et al (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375(9727):1695–1703

    Article  CAS  PubMed  Google Scholar 

  55. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359(13):1317–1329

    Article  CAS  PubMed  Google Scholar 

  56. Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET et al (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 7(1):59–64

    Article  CAS  PubMed  Google Scholar 

  57. Balami JS, Sutherland BA, Buchan AM (2013) Complications associated with recombinant tissue plasminogen activator therapy for acute ischaemic stroke. CNS Neurol Disord Drug Targets 12(2):155–169

    Article  CAS  PubMed  Google Scholar 

  58. Rha JH, Saver JL (2007) The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 38(3):967–973

    Article  PubMed  Google Scholar 

  59. Becker KJ, Brott TG (2005) Approval of the MERCI clot retriever: a critical view. Stroke 36(2):400–403

    Article  PubMed  Google Scholar 

  60. Investigators PPST (2009) The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 40(8):2761–2768

    Article  Google Scholar 

  61. Koh JS, Lee SJ, Ryu CW, Kim HS (2012) Safety and efficacy of mechanical thrombectomy with solitaire stent retrieval for acute ischemic stroke: a systematic review. Neurointervention 7(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA et al (2012) Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet 380(9849):1231–1240

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ciccone A, del Zoppo GJ (2014) Evolving role of endovascular treatment of acute ischemic stroke. Curr Neurol Neurosci Rep 14(1):416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333(24):1581–1588

    Article  Google Scholar 

  65. IST-3 Collaborative Group, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, Innes K, Venables G, Czlonkowska A, Kobayashi A, Ricci S, Murray V, Berge E, Slot KB, Hankey GJ, Correia M, Peeters A, Matz K, Lyrer P, Gubitz G, Phillips SJ, Arauz A (2012) The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. Lancet 379(9834):2352–2363

    Article  CAS  Google Scholar 

  66. Jauch EC, Saver JL, Adams HP, Bruno A, Connors JJ, Demaerschalk BM et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(3):870–947

    Article  PubMed  Google Scholar 

  67. Logallo N, Kvistad CE, Thomassen L (2015) Therapeutic potential of tenecteplase in the management of acute ischemic stroke. CNS Drugs 29(10):811–818

    Article  CAS  PubMed  Google Scholar 

  68. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F et al (2012) A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med 366(12):1099–1107

    Article  CAS  PubMed  Google Scholar 

  69. Huang X, Cheripelli BK, Lloyd SM, Kalladka D, Moreton FC, Siddiqui A et al (2015) Alteplase versus tenecteplase for thrombolysis after ischaemic stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study. Lancet Neurol 14(4):368–376

    Article  CAS  PubMed  Google Scholar 

  70. Coutts SB, Dubuc V, Mandzia J, Kenney C, Demchuk AM, Smith EE et al (2015) Tenecteplase–tissue-type plasminogen activator evaluation for minor ischemic stroke with proven occlusion. Stroke 46(3):769–774

    Article  CAS  PubMed  Google Scholar 

  71. Logallo N, Kvistad CE, Nacu A, Thomassen L (2016) Novel thrombolytics for acute ischemic stroke: challenges and opportunities. CNS Drugs 30(2):101–108

    Article  CAS  PubMed  Google Scholar 

  72. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M et al (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36(1):66–73

    Article  CAS  PubMed  Google Scholar 

  73. Furlan AJ, Eyding D, Albers GW, Al-Rawi Y, Lees KR, Rowley HA et al (2006) Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 37(5):1227–1231

    Article  CAS  PubMed  Google Scholar 

  74. Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F et al (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8(2):141–150

    Article  CAS  PubMed  Google Scholar 

  75. Albers GW, von Kummer R, Truelsen T, Jensen J-KS, Ravn GM, Grønning BA et al (2015) Safety and efficacy of desmoteplase given 3–9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet Neurol 14(6):575–584

    Article  CAS  PubMed  Google Scholar 

  76. Barreto AD, Alexandrov AV, Lyden P, Lee J, Martin-Schild S, Shen L et al (2012) The Argatroban and Tissue-Type Plasminogen Activator Stroke Study: final results of a pilot safety study. Stroke 43(3):770–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barreto AD, Alexandrov AV, Shen L, Sisson A, Bursaw AW, Sahota P et al (2013) CLOTBUST-Hands Free: pilot safety study of a novel operator-independent ultrasound device in patients with acute ischemic stroke. Stroke 44(12):3376–3381

    Article  PubMed  Google Scholar 

  78. Flint AC, Duckwiler GR, Budzik RF, Liebeskind DS, Smith WS (2007) Mechanical thrombectomy of intracranial internal carotid occlusion: pooled results of the MERCI and Multi MERCI Part I trials. Stroke 38(4):1274–1280

    Article  PubMed  Google Scholar 

  79. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG et al (2012) Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet 380(9849):1241–1249

    Article  PubMed  Google Scholar 

  80. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM et al (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372(24):2285–2295

    Article  CAS  PubMed  Google Scholar 

  81. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372(24):2296–2306

    Article  CAS  PubMed  Google Scholar 

  82. Asadi H, Yan B, Dowling R, Wong S, Mitchell P (2014) Advances in medical revascularisation treatments in acute ischemic stroke. Thrombosis 2014:14

    Article  Google Scholar 

  83. Tsivgoulis G, Katsanos AH, Alexandrov AV (2014) Reperfusion therapies of acute ischemic stroke: potentials and failures. Front Neurol 5:215

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hussein HM, Georgiadis AL, Vazquez G, Miley JT, Memon MZ, Mohammad YM et al (2010) Occurrence and predictors of futile recanalization following endovascular treatment among patients with acute ischemic stroke: a multicenter study. AJNR Am J Neuroradiol 31(3):454–458

    Article  CAS  PubMed  Google Scholar 

  85. Roundtable STAI (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30(12):2752–2758

    Article  Google Scholar 

  86. Grupke S, Hall J, Dobbs M, Bix GJ, Fraser JF (2015) Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: from review to preview. Clin Neurol Neurosurg 129:1–9

    Article  PubMed  Google Scholar 

  87. Schenck JF, Zimmerman EA (2004) High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed 17(7):433–445

    Article  CAS  PubMed  Google Scholar 

  88. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  89. Iwamura M, Inamoto N (1967) Novel formation of nitroxide radicals by radical addition to nitrones. Bull Chem Soc Jpn 40(3):703

    Article  CAS  Google Scholar 

  90. Janzen EG, Blackburn BJ (1969) Detection and identification of short-lived free radicals by electron spin resonance trapping techniques (spin trapping). Photolysis of organolead, -tin, and -mercury compounds. J Am Chem Soc 91(16):4481–4490

    Article  CAS  Google Scholar 

  91. Poyer JL, Floyd RA, McCay PB, Janzen EG, Davis ER (1978) Spin-trapping of the trichloromethyl radical produced during enzymic NADPH oxidation in the presence of carbon tetrachloride or bromotrichloromethane. Biochim Biophys Acta 539(3):402–409

    Article  CAS  PubMed  Google Scholar 

  92. Floyd RA, Soong LM (1977) Spin trapping in biological systems. Oxidation of the spin trap 5,5-dimethyl-1-pyrroline-1-oxide by a hydroperoxide-hematin system. Biochem Biophys Res Commun 74(1):79–84

    Article  CAS  PubMed  Google Scholar 

  93. Harbour JR, Bolton JR (1975) Superoxide formation in spinach chloroplasts: electron spin resonance detection by spin trapping. Biochem Biophys Res Commun 64(3):803–807

    Article  CAS  PubMed  Google Scholar 

  94. Robert AF, Hema KC, Ting H, Rheal T (2011) Anti-cancer activity of nitrones and observations on mechanism of action. Anticancer Agents Med Chem 11(4):373–379

    Article  Google Scholar 

  95. Costa DS, Martino T, Magalhaes FC, Justo G, Coelho MG, Barcellos JC et al (2015) Synthesis of N-methylarylnitrones derived from alkyloxybenzaldehydes and antineoplastic effect on human cancer cell lines. Bioorg Med Chem 23(9):2053–2061

    Article  CAS  PubMed  Google Scholar 

  96. Inoue Y, Asanuma T, Smith N, Saunders D, Oblander J, Kotake Y et al (2007) Modulation of Fas-FasL related apoptosis by PBN in the early phases of choline deficient diet-mediated hepatocarcinogenesis in rats. Free Radic Res 41(9):972–980

    Article  CAS  PubMed  Google Scholar 

  97. Floyd RA, Towner RA, Wu D, Abbott A, Cranford R, Branch D et al (2010) Anti-cancer activity of nitrones in the Apc(Min/+) model of colorectal cancer. Free Radic Res 44(1):108–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Floyd RA, Kopke RD, Choi CH, Foster SB, Doblas S, Towner RA (2008) Nitrones as therapeutics. Free Radic Biol Med 45(10):1361–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Floyd RA, Hensley K, Bing G (2000) Evidence for enhanced neuro-inflammatory processes in neurodegenerative diseases and the action of nitrones as potential therapeutics. J Neural Transm Suppl 60:387–414

    Google Scholar 

  100. Stiles M, Moiseyev GP, Budda ML, Linens A, Brush RS, Qi H et al (2015) PBN (phenyl-N-tert-butylnitrone)-derivatives are effective in slowing the visual cycle and rhodopsin regeneration and in protecting the retina from light-induced damage. PLoS One 10(12), e0145305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Doggrell SA (2006) Nitrone spin on cerebral ischemia. Curr Opin Investig Drugs 7(1):20–24

    CAS  PubMed  Google Scholar 

  102. Chioua M, Sucunza D, Soriano E, Hadjipavlou-Litina D, Alcazar A, Ayuso I et al (2012) Alpha-aryl-N-alkyl nitrones, as potential agents for stroke treatment: synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties. J Med Chem 55(1):153–168

    Article  CAS  PubMed  Google Scholar 

  103. Novelli GP, Angiolini P, Tani R, Consales G, Bordi L (1986) Phenyl-t-butyl-nitrone is active against traumatic shock in rats. Free Radic Res Commun 1(5):321–327

    Google Scholar 

  104. Edenius C, Strid S, Borgå O, Breitholtz-Emanuelsson A, Vallén KL, Fransson B (2007) Pharmacokinetics of NXY-059, a nitrone-based free radical trapping agent, in healthy young and elderly subjects. J Stroke Cerebrovasc Dis 11(1):34–42

    Article  Google Scholar 

  105. Dehouck MP, Cecchelli R, Richard Green A, Renftel M, Lundquist S (2002) In vitro blood-brain barrier permeability and cerebral endothelial cell uptake of the neuroprotective nitrone compound NXY-059 in normoxic, hypoxic and ischemic conditions. Brain Res 955(1-2):229–235

    Article  CAS  PubMed  Google Scholar 

  106. Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener H-C et al (2006) NXY-059 for acute ischemic stroke. N Engl J Med 354(6):588–600

    Article  CAS  PubMed  Google Scholar 

  107. Diener HC, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM et al (2008) NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke 39(6):1751–1758

    Article  CAS  PubMed  Google Scholar 

  108. Savitz SI, Fisher M (2007) Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol 61(5):396–402

    Article  CAS  PubMed  Google Scholar 

  109. Savitz SI (2007) A critical appraisal of the NXY-059 neuroprotection studies for acute stroke: a need for more rigorous testing of neuroprotective agents in animal models of stroke. Exp Neurol 205(1):20–25

    Article  CAS  PubMed  Google Scholar 

  110. Lapchak PA, Araujo DM, Song D, Wei J, Zivin JA (2002) Neuroprotective effects of the spin trap agent disodium-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (Generic NXY-059) in a rabbit small clot embolic stroke model: combination studies with the thrombolytic tissue plasminogen activator. Stroke 33(5):1411–1415

    Article  CAS  PubMed  Google Scholar 

  111. Lapchak PA, Araujo DM, Song D, Wei J, Purdy R, Zivin JA (2002) Effects of the spin trap agent disodium-[tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (Generic NXY-059) on intracerebral hemorrhage in a rabbit large clot embolic stroke model: combination studies with tissue plasminogen activator. Stroke 33(6):1665–1670

    Article  CAS  PubMed  Google Scholar 

  112. Green AR (2008) Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol 153(Suppl 1):S325–S338

    CAS  PubMed  Google Scholar 

  113. Bath PM, Gray LJ, Bath AJ, Buchan A, Miyata T, Green AR (2009) Effects of NXY-059 in experimental stroke: an individual animal meta-analysis. Br J Pharmacol 157(7):1157–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Feuerstein GZ, Zaleska MM, Krams M, Wang X, Day M, Rutkowski JL et al (2008) Missing steps in the STAIR case: a translational medicine perspective on the development of NXY-059 for treatment of acute ischemic stroke. J Cereb Blood Flow Metab 28(1):217–219

    Article  CAS  PubMed  Google Scholar 

  115. Ning X, Temming RP, Dommerholt J, Guo J, Ania DB, Debets MF et al (2010) Protein modification by strain-promoted alkyne–nitrone cycloaddition. Angew Chem Int Ed 49(17):3065–3068

    Article  CAS  Google Scholar 

  116. MacKenzie DA, Sherratt AR, Chigrinova M, Kell AJ, Pezacki JP (2015) Bioorthogonal labelling of living bacteria using unnatural amino acids containing nitrones and a nitrone derivative of vancomycin. Chem Commun 51(62):12501–12504

    Article  CAS  Google Scholar 

  117. Barton DHR, Day MJ, Hesse RH, Pechet MM (1975) A new rearrangement of ketonic nitrones; a convenient alternative to the Beckmann rearrangement. J Chem Soc Perkin Trans 1(18):1764–1767

    Article  Google Scholar 

  118. Ayuso MI, Chioua M, Martínez-Alonso E, Soriano E, Montaner J, Masjuán J et al (2015) CholesteroNitrones for stroke. J Med Chem 58(16):6704–6709

    Article  CAS  PubMed  Google Scholar 

  119. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10(3):267–272

    Article  CAS  PubMed  Google Scholar 

  120. Garcia-Bonilla L, Cid C, Alcazar A, Burda J, Ayuso I, Salinas M (2007) Regulatory proteins of eukaryotic initiation factor 2-alpha subunit (eIF2 alpha) phosphatase, under ischemic reperfusion and tolerance. J Neurochem 103(4):1368–1380

    Article  CAS  PubMed  Google Scholar 

  121. Ayuso MI, Gonzalo-Gobernado R, Marco-Contelles J, Montoya JJ, Alcazar A, Montaner J (2016) Neuroprotection of cholesteronitrones treatment in an experimental stroke model. Euro Stroke J 1(1S):387–388

    Google Scholar 

  122. Ayuso MI, Martínez-Alonso E, Chioua M, Escobar-Peso A, Montaner J, Marco-Contelles J, Alcázar A (2016) Quinolinyl nitrone RP19 induces neuroprotection after transient brain ischemia. Manuscript in preparation

    Google Scholar 

  123. Lapchak PA (2013) Drug-like property profiling of novel neuroprotective compounds to treat acute ischemic stroke: guidelines to develop pleiotropic molecules. Transl Stroke Res 4(3):328–342

    Article  CAS  PubMed  Google Scholar 

  124. Lapchak PA (2010) A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother 11(10):1753–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Intelligent Pharma. Pythia software. http://intelligentpharma.com/upload/discovery_tools/pythia_stand_alone0714.pdf

  126. Suarez I, Bodega G, Fernandez B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41(2-3):123–142

    Article  CAS  PubMed  Google Scholar 

  127. Greenberg DA, Jin K (2013) Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci 70(10):1753–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun Y, Yu P, Zhang G, Wang L, Zhong H, Zhai Z, et al. Therapeutic effects of tetramethylpyrazine nitrone in rat ischemic stroke models. J Neurosci Res 2012;90(8):1662–9

    Google Scholar 

  129. Li S, Chen H, Wang X, Wu J, Jiang J, Wang Y. Pharmacokinetic study of a novel stroke therapeutic, 2-[[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine, by a simple HPLC-UV method in rats. Eur J Drug Metab Pharmacokinet 2011;36(2):95–101

    Google Scholar 

  130. Lapchak PA, Schubert DR, Maher PA. De-risking of stilbazulenyl nitrone (STAZN), a lipophilic nitrone to treat stroke using a unique panel of in vitro assays. Transl Stroke Res 2011;2(2):209–17

    Google Scholar 

  131. Ley JJ, Belayev L, Saul I, Becker DA, Ginsberg MD. Neuroprotective effect of STAZN, a novel azulenyl nitrone antioxidant, in focal cerebral ischemia in rats: dose-response and therapeutic window. Brain Res 2007;1180:101–10

    Google Scholar 

Download references

Acknowledgments

We are indebted to Ph.D. D.J. Hadjipavlou-Litina for the in vitro antioxidants experiments and Ms. M. Gómez-Calcerrada for her assistance. This work was supported by the Institute of Health Carlos III from the Spanish Ministry of Economy and Competitiveness (MINECO) with the grant number PI14/00705 (State Plan), and the funding from FEDER grants. JMC and MC thank MINECO grants SAF2012-33304 and SAF2015-65586-R, European Union (COST Action 1103) and Universidad Camilo José Cela, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Alcázar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Escobar-Peso, A., Chioua, M., Frezza, V., Martínez-Alonso, E., Marco-Contelles, J., Alcázar, A. (2017). Nitrones, Old Fellows for New Therapies in Ischemic Stroke. In: Lapchak, P., Zhang, J. (eds) Neuroprotective Therapy for Stroke and Ischemic Disease. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45345-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45345-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45344-6

  • Online ISBN: 978-3-319-45345-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics