Skip to main content

Targeting Pericytes and the Microcirculation for Ischemic Stroke Therapy

  • Chapter
  • First Online:
Neuroprotective Therapy for Stroke and Ischemic Disease

Abstract

Ischaemic stroke is a major global cause of disability and death, yet the therapeutic options currently available for stroke are very limited. The only effective acute treatments of ischemic stroke revolve around restoring patency to the occluded artery through degradation (intravenous thrombolysis) or mechanical removal of the clot [Int J Stroke 10:1168–1178, 2015; Brain 136:3528–3553, 2013]. However, there is an increasing body of evidence to suggest that even following recanalization of the large vessel, the post-ischemic microvasculature remains dysfunctional and does not necessarily allow effective reperfusion. Contributors to this phenomenon include astrocyte swelling and compression of microvessels, obstruction of flow due to inflammatory changes, leukocyte adhesion and thrombosis, and the constriction of capillaries by pericytes dying in rigor [Shock 8:95–101, 1997; J Cereb Blood Flow 36:451–455, 2016]. This chapter will provide an overview of microvascular function in health, describe the pathological changes that occur following ischemia and reperfusion, and explore the role of the microvasculature, with a focus on pericytes as a potential therapeutic target in ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mink JW, Blumenschine RJ, Adams DB (1981) Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol 241(3):R203–R212

    CAS  PubMed  Google Scholar 

  2. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32(7):1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456(7223):745–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X et al (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823

    Article  CAS  PubMed  Google Scholar 

  6. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103

    Article  PubMed  Google Scholar 

  7. Nizar K, Uhlirova H, Tian P, Saisan PA, Cheng Q, Reznichenko L et al (2013) In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J Neurosci 33(19):8411–8422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hillman EMC (2014) Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 37:161–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA et al (2015) Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: the GBD 2013 study. Neuroepidemiology 45(3):161–176

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bogousslavsky J, Van Melle G, Regli F (1988) The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke. Stroke 19(9):1083–1092

    Article  CAS  PubMed  Google Scholar 

  11. Neuhaus AA, Rabie T, Sutherland BA, Papadakis M, Hadley G, Cai R et al (2014) Importance of preclinical research in the development of neuroprotective strategies for ischemic stroke. JAMA Neurol 71(5):634–639

    Article  PubMed  Google Scholar 

  12. Liebeskind DS (2007) Understanding blood flow: the other side of an acute arterial occlusion. Int J Stroke 2(2):118–120

    Article  PubMed  Google Scholar 

  13. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    Article  CAS  PubMed  Google Scholar 

  14. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100(1):328–335

    Article  CAS  PubMed  Google Scholar 

  15. Astrup J, Siesjö BK, Symon L, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12(6):723–725

    Article  CAS  PubMed  Google Scholar 

  16. Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8(1):51–57

    Article  CAS  PubMed  Google Scholar 

  17. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36(4):557–565

    Article  CAS  PubMed  Google Scholar 

  18. Hu J-L, Li X, Wang X-M, Cheng Z-P, Chen D-F, Wang S-C et al (2015) Comparison of elastic properties of bilateral carotid arteries in relation to site of acute ischemic stroke using velocity vector imaging. Chin Med J (Engl) 128(21):2960–2963

    Article  Google Scholar 

  19. Cipolla MJ, Lessov N, Hammer ES, Curry AB (2001) Threshold duration of ischemia for myogenic tone in middle cerebral arteries: effect on vascular smooth muscle actin. Stroke 32(7):1658–1664

    Article  CAS  PubMed  Google Scholar 

  20. Dirnagl U, Pulsinelli W (1990) Autoregulation of cerebral blood flow in experimental focal brain ischemia. J Cereb Blood Flow Metab 10(3):327–336

    Article  CAS  PubMed  Google Scholar 

  21. Shin HK, Nishimura M, Jones PB, Ay H, Boas DA, Moskowitz MA et al (2008) Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke 39(5):1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hossmann K-A (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26(7–8):1057–1083

    PubMed  Google Scholar 

  23. Sweet JG, Chan S-L, Cipolla MJ (2015) Effect of hypertension and carotid occlusion on brain parenchymal arteriole structure and reactivity. J Appl Physiol 119(7):817–823

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shih AY, Friedman B, Drew PJ, Tsai PS, Lyden PD, Kleinfeld D (2009) Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. J Cereb Blood Flow Metab 29(4):738–751

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shih AY, Blinder P, Tsai PS, Friedman B, Stanley G, Lyden PD et al (2013) The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci 16(1):55–63

    Article  CAS  PubMed  Google Scholar 

  26. Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D (2013) The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosci 16(7):889–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih AY, Rühlmann C, Blinder P, Devor A, Drew PJ, Friedman B et al (2015) Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture. Microcirculation 22(3):204–218

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nguyen J, Nishimura N, Fetcho RN, Iadecola C, Schaffer CB (2011) Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries. J Cereb Blood Flow Metab 31(11):2243–2254

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sasaki M, Honmou O, Radtke C, Kocsis JD (2011) Development of a middle cerebral artery occlusion model in the nonhuman primate and a safety study of i.v. infusion of human mesenchymal stem cells. PLoS One 6(10):e26577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohta H, Nakano S, Yokogami K, Iseda T, Yoneyama T, Wakisaka S (2004) Appearance of early venous filling during intra-arterial reperfusion therapy for acute middle cerebral artery occlusion: a predictive sign for hemorrhagic complications. Stroke 35(4):893–898

    Article  PubMed  Google Scholar 

  31. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E et al (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384(9958):1929–1935

    Google Scholar 

  32. Balami JS, Hadley G, Sutherland BA, Karbalai H, Buchan AM (2013) The exact science of stroke thrombolysis and the quiet art of patient selection. Brain 136(Pt 12):3528–3553

    Article  PubMed  Google Scholar 

  33. Berkhemer OA, Fransen PSS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ et al (2015) A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 372(1):11–20

    Article  PubMed  CAS  Google Scholar 

  34. Campbell BCV, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372(11):1009–1018

    Article  CAS  PubMed  Google Scholar 

  35. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J et al (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372(11):1–12

    Article  CAS  Google Scholar 

  36. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372(24):2296–2306

    Article  CAS  PubMed  Google Scholar 

  37. Saver JL, Goyal M, Bonafe A, Diener H-C, Levy EI, Pereira VM et al (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372(24):2285–2295

    Article  CAS  PubMed  Google Scholar 

  38. Balami JS, Sutherland BA, Edmunds LD, Grunwald IQ, Neuhaus AA, Hadley G et al (2015) A systematic review and meta-analysis of randomized controlled trials of endovascular thrombectomy compared with best medical treatment for acute ischemic stroke. Int J Stroke 10(8):1168–1178

    PubMed  PubMed Central  Google Scholar 

  39. Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, et al (2016) Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet (London, England) 387(10029):1723–1731

    Google Scholar 

  40. Leng X, Fang H, Leung TWH, Mao C, Miao Z, Liu L et al (2016) Impact of collaterals on the efficacy and safety of endovascular treatment in acute ischaemic stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 87(5):537–544

    Article  PubMed  Google Scholar 

  41. Leng X, Fang H, Leung TWH, Mao C, Xu Y, Miao Z et al (2016) Impact of collateral status on successful revascularization in endovascular treatment: a systematic review and meta-analysis. Cerebrovasc Dis 41(1–2):27–34

    PubMed  Google Scholar 

  42. Sutherland BA, Buchan AM. Alteplase treatment does not increase brain injury after mechanical middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. Nature Publishing Group; 2013 Aug 21;(April):1–7.

    Google Scholar 

  43. Sutherland BA, Papadakis M, Chen R-L, Buchan AM (2011) Cerebral blood flow alteration in neuroprotection following cerebral ischaemia. J Physiol 589(Pt 17):4105–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sutherland BA, Neuhaus AA, Couch Y, Balami JS, Deluca GC, Hadley G et al (2016) The transient intraluminal filament middle cerebral artery occlusion model as a model of endovascular thrombectomy in stroke. J Cereb Blood Flow Metab 36(2):363–369

    Article  PubMed  Google Scholar 

  45. Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 282(2):C227–C241

    Article  CAS  PubMed  Google Scholar 

  46. De Silva TM, Brait VH, Drummond GR, Sobey CG, Miller AA (2011) Nox2 oxidase activity accounts for the oxidative stress and vasomotor dysfunction in mouse cerebral arteries following ischemic stroke. PLoS One 6(12):e28393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Maneen MJ, Hannah R, Vitullo L, DeLance N, Cipolla MJ (2006) Peroxynitrite diminishes myogenic activity and is associated with decreased vascular smooth muscle F-actin in rat posterior cerebral arteries. Stroke 37(3):894–899

    Article  CAS  PubMed  Google Scholar 

  48. Cipolla MJ, Chan S-LSL, Sweet J, Tavares MJ, Gokina N, Brayden JE (2014) Postischemic reperfusion causes smooth muscle calcium sensitization and vasoconstriction of parenchymal arterioles. Stroke 45(8):2425–2430

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cipolla MJ, Sweet JG, Gokina NI, White SL, Nelson MT (2013) Mechanisms of enhanced basal tone of brain parenchymal arterioles during early postischemic reperfusion: role of ET-1-induced peroxynitrite generation. J Cereb Blood Flow Metab 33(10):1486–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Belayev L, Pinard E, Nallet H, Seylaz J, Liu Y, Riyamongkol P et al (2002) Albumin therapy of transient focal cerebral ischemia: in vivo analysis of dynamic microvascular responses. Stroke 33(4):1077–1084

    Article  PubMed  Google Scholar 

  51. Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI (2000) Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke 31(5):1153–1161

    Article  CAS  PubMed  Google Scholar 

  52. Lovick TA, Brown LA, Key BJ (1999) Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Neuroscience 92(1):47–60

    Article  CAS  PubMed  Google Scholar 

  53. Borowsky IW, Collins RC (1989) Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities. J Comp Neurol 288(3):401–413

    Article  CAS  PubMed  Google Scholar 

  54. Kleinfeld D, Mitra PP, Helmchen F, Denk W (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 95(26):15741–15746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sakadžić S, Mandeville ET, Gagnon L, Musacchia JJ, Yaseen MA, Yucel MA et al (2014) Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat Commun 5:5734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chien S (1987) Red cell deformability and its relevance to blood flow. Annu Rev Physiol 49:177–192

    Article  CAS  PubMed  Google Scholar 

  57. Schmid-Schönbein GW, Shih YY, Chien S (1980) Morphometry of human leukocytes. Blood 56(5):866–875

    PubMed  Google Scholar 

  58. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75(5):904–915

    Article  CAS  PubMed  Google Scholar 

  59. Krogh A (1919) The supply of oxygen to the tissues and the regulation of the capillary circulation. J Physiol 52(6):457–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jespersen SN, Østergaard L (2012) The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab 32(2):264–277

    Article  CAS  PubMed  Google Scholar 

  61. Østergaard L, Jespersen SN, Mouridsen K, Mikkelsen IK, Jonsdottír KÝ, Tietze A et al (2013) The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab 33(5):1–14

    Article  Google Scholar 

  62. Østergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IKK et al (2013) The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab 33(12):1825–1837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Østergaard L, Aamand R, Gutiérrez-Jiménez E, Ho YC, Blicher JU, Madsen SM et al (2013) The capillary dysfunction hypothesis of Alzheimer’s disease. Neurobiol Aging 34(4):1018–1031

    Article  PubMed  Google Scholar 

  64. Østergaard L, Engedal TS, Aamand R, Mikkelsen R, Iversen NK, Anzabi M et al (2014) Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab 34(March):1–14

    Google Scholar 

  65. Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58(1):1–10

    Article  PubMed  Google Scholar 

  66. Kunz J, Krause D, Kremer M, Dermietzel R (1994) The 140-kDa protein of blood-brain barrier-associated pericytes is identical to aminopeptidase N. J Neurochem 62(6):2375–2386

    Article  CAS  PubMed  Google Scholar 

  67. Nehls V, Denzer K, Drenckhahn D (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270(3):469–474

    Article  CAS  PubMed  Google Scholar 

  68. Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222(2):218–227

    Article  CAS  PubMed  Google Scholar 

  69. Bondjers C, Kalén M, Hellström M, Scheidl SJ, Abramsson A, Renner O et al (2003) Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162(3):721–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nehls V, Drenckhahn D (1991) Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113(1):147–154

    Article  CAS  PubMed  Google Scholar 

  71. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C et al (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561

    Article  CAS  PubMed  Google Scholar 

  73. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468(7323):562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523

    Article  CAS  PubMed  Google Scholar 

  75. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Brühl M-L et al (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and “instruct” them with pattern-recognition and motility programs. Nat Immunol 14(1):41–51

    Article  CAS  PubMed  Google Scholar 

  76. Dore-Duffy P, Katychev A, Wang X, Van Buren E (2006) CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 26(5):613–624

    Article  CAS  PubMed  Google Scholar 

  77. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fernández-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A 107(51):22290–22295

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87(1):95–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36(2):451–455

    Article  CAS  PubMed  Google Scholar 

  82. Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EMC (2014) A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3(3):e000787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. O’Farrell FM, Attwell D (2014) A role for pericytes in coronary no-reflow. Nat Rev Cardiol 11(7):1–6

    Google Scholar 

  84. Ames A, Wright RL, Kowada M, Thurston JM, Majno G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52(2):437–453

    PubMed  PubMed Central  Google Scholar 

  85. Crowell RM, Olsson Y (1972) Impaired microvascular filling after focal cerebral ischemia in monkeys. J Neurosurg 36(3):303–309

    Article  CAS  PubMed  Google Scholar 

  86. Dalkara T, Arsava EM (2012) Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis? J Cereb Blood Flow Metab 32(12):2091–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tomita Y, Tomita M, Schiszler I, Amano T, Tanahashi N, Kobari M et al (2002) Moment analysis of microflow histogram in focal ischemic lesion to evaluate microvascular derangement after small pial arterial occlusion in rats. J Cereb Blood Flow Metab 22(6):663–669

    Article  PubMed  Google Scholar 

  88. Hauck EF, Apostel S, Hoffmann JF, Heimann A, Kempski O (2004) Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy. J Cereb Blood Flow Metab 24(4):383–391

    Article  PubMed  Google Scholar 

  89. Endres M, Laufs U, Liao JK, Moskowitz MA (2004) Targeting eNOS for stroke protection. Trends Neurosci 27(5):283–289

    Article  CAS  PubMed  Google Scholar 

  90. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C (2012) Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 13(9):11753–11772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17(10):1048–1056

    Article  CAS  PubMed  Google Scholar 

  92. Michiels C, Arnould T, Remacle J (2000) Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta 1497(1):1–10

    Article  CAS  PubMed  Google Scholar 

  93. Okada Y, Copeland BR, Fitridge R, Koziol JA, del Zoppo GJ (1994) Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 25(9):1847–1853; discussion 1853–4

    Article  CAS  PubMed  Google Scholar 

  94. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM (1991) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22(10):1276–1283

    Article  PubMed  Google Scholar 

  96. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V (2007) Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 6(3):258–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Garcia JH, Liu KF, Yoshida Y, Chen S, Lian J (1994) Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol 145(3):728–740

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kimelberg HK (2005) Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50(4):389–397

    Article  PubMed  Google Scholar 

  99. Ito U, Hakamata Y, Kawakami E, Oyanagi K (2011) Temporary [corrected] cerebral ischemia results in swollen astrocytic end-feet that compress microvessels and lead to delayed [corrected] focal cortical infarction. J Cereb Blood Flow Metab 31(1):328–338

    Article  PubMed  Google Scholar 

  100. Fischer EG, Ames A, Hedley-Whyte ET, O’Gorman S (1977) Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the “no-reflow phenomenon”. Stroke 8(1):36–39

    Article  CAS  PubMed  Google Scholar 

  101. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15(9):1031–1037

    Article  CAS  PubMed  Google Scholar 

  102. Choudhri TF, Hoh BL, Zerwes HG, Prestigiacomo CJ, Kim SC, Connolly ES et al (1998) Reduced microvascular thrombosis and improved outcome in acute murine stroke by inhibiting GP IIb/IIIa receptor-mediated platelet aggregation. J Clin Invest 102(7):1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Abumiya T, Fitridge R, Mazur C, Copeland BR, Koziol JA, Tschopp JF et al (2000) Integrin alpha(IIb)beta(3) inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia. Stroke 31(6):1402–1409; discussion 1409–10

    Article  CAS  PubMed  Google Scholar 

  104. Kleinschnitz C, Pozgajova M, Pham M, Bendszus M, Nieswandt B, Stoll G (2007) Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 115(17):2323–2330

    Article  CAS  PubMed  Google Scholar 

  105. Chen ZM, Sandercock P, Pan HC, Counsell C, Collins R, Liu LS et al (2000) Indications for early aspirin use in acute ischemic stroke: a combined analysis of 40 000 randomized patients from the Chinese acute stroke trial and the international stroke trial. On behalf of the CAST and IST collaborative groups. Stroke 31(6):1240–1249

    Article  CAS  PubMed  Google Scholar 

  106. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD et al (2014) Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45(7):2160–2236

    Article  PubMed  Google Scholar 

  107. Simoons M, Krzemiñska-Pakula M, Alonso A, Goodman S, Kali A, Loos U et al (2002) Improved reperfusion and clinical outcome with enoxaparin as an adjunct to streptokinase thrombolysis in acute myocardial infarction. The AMI-SK study. Eur Heart J 23(16):1282–1290

    Article  CAS  PubMed  Google Scholar 

  108. Hase Y, Okamoto Y, Fujita Y, Kitamura A, Nakabayashi H, Ito H et al (2012) Cilostazol, a phosphodiesterase inhibitor, prevents no-reflow and hemorrhage in mice with focal cerebral ischemia. Exp Neurol 233(1):523–533

    Article  CAS  PubMed  Google Scholar 

  109. Mori E, del Zoppo GJ, Chambers JD, Copeland BR, Arfors KE (1992) Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23(5):712–718

    Article  CAS  PubMed  Google Scholar 

  110. Vemuganti R, Dempsey RJ, Bowen KK (2004) Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke 35(1):179–184

    Article  CAS  PubMed  Google Scholar 

  111. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW et al (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6(2):159–163

    Article  CAS  PubMed  Google Scholar 

  112. Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286(2):C426–C432

    Article  CAS  PubMed  Google Scholar 

  113. Simard JM, Woo SK, Bhatta S, Gerzanich V (2008) Drugs acting on SUR1 to treat CNS ischemia and trauma. Curr Opin Pharmacol 8(1):42–49

    Article  CAS  PubMed  Google Scholar 

  114. Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener H-C et al (2006) NXY-059 for acute ischemic stroke. N Engl J Med 354(6):588–600

    Article  CAS  PubMed  Google Scholar 

  115. Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM et al (2007) NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357(6):562–571

    Article  CAS  PubMed  Google Scholar 

  116. Chamorro A, Amaro S, Castellanos M, Segura T, Arenillas J, Martí-Fábregas J et al (2014) Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomised, double-blind phase 2b/3 trial. Lancet Neurol 13(5):453–460

    Article  CAS  PubMed  Google Scholar 

  117. Kolyada AY, Riley KN, Herman IM (2003) Rho GTPase signaling modulates cell shape and contractile phenotype in an isoactin-specific manner. Am J Physiol Cell Physiol 285(5):C1116–C1121

    Article  CAS  PubMed  Google Scholar 

  118. Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T et al (2005) Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 36(10):2251–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sakurada S, Takuwa N, Sugimoto N, Wang Y, Seto M, Sasaki Y et al (2003) Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ Res 93(6):548–556

    Article  CAS  PubMed  Google Scholar 

  120. Zhang J, Yang J, Zhang C, Jiang X, Zhou H, Liu M (2012) Calcium antagonists for acute ischemic stroke. Cochrane Database Syst Rev 5:CD001928

    Google Scholar 

  121. Rogalewski A, Schneider A, Ringelstein EB, Schäbitz W-R (2006) Toward a multimodal neuroprotective treatment of stroke. Stroke 37(4):1129–1136

    Article  PubMed  Google Scholar 

  122. Hossmann KA (1997) Reperfusion of the brain after global ischemia: hemodynamic disturbances. Shock 8(2):95–101; discussion 102–3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hasneen Karbalai for his constructive comments on the manuscript. The authors were supported by funding from the Radcliffe Department of Medicine Scholarship (AAN), Medical Research Council (AMB, BAS), and Oxford Biomedical Research Centre (AMB).

Disclosures AMB is a cofounder of Brainomix Limited, a start-up company from the University of Oxford developing imaging biomarkers for neurological and cerebrovascular disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair M. Buchan DSc (Oxon) LLD (Hon) FRCP FRCPEd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neuhaus, A.A., Sutherland, B.A., Buchan, A.M. (2017). Targeting Pericytes and the Microcirculation for Ischemic Stroke Therapy. In: Lapchak, P., Zhang, J. (eds) Neuroprotective Therapy for Stroke and Ischemic Disease. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45345-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45345-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45344-6

  • Online ISBN: 978-3-319-45345-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics