Skip to main content

Cholinergic Protection in Ischemic Brain Injury

  • Chapter
  • First Online:
Neuroprotective Therapy for Stroke and Ischemic Disease

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

The cholinergic system is essential for maintenance of cognitive, autonomic, and immune homeostasis in mammals. Existing preclinical studies suggest that endogenous cholinergic tone elevated by ischemic or traumatic brain injury may serve as a combination autotherapy aiming at multiple distinct cellular and molecular pathways with converging neuroprotective and anti-inflammatory efficacies. These hardwired endogenous protective mechanisms can be augmented by cholinergic treatments including nicotinic receptor agonists, positive allosteric modulation, and vagus nerve stimulation. The α7 subtype of nicotinic acetylcholine receptors (nAChRs) is uniquely positioned as a promising therapeutic target in stroke and traumatic brain injury because of the neuroprotective anti-inflammatory efficacy of α7 nAChR activation and the ubiquitous expression of α7 nAChRs in mammalian neuronal, glial, and immune tissues. This article further explores the therapeutic promise of endogenous α7-dependent neuroprotective and anti-inflammatory injury-induced autotherapy which may act as an important physiological function of these ubiquitous receptors and may hold significant translational potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CaMKII:

Ca2+/calmodulin-dependent kinase-II

CDP-choline:

Cytidine diphosphate-choline

DMV:

The dorsal motor nucleus of the vagus

JAK:

Janus kinase

NAb:

The nucleus ambiguus

NfkB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PI3K/Akt:

Phosphatidylinositol-4,5-bisphosphate 3-kinase/serine/threonine-specific protein kinase

RK:

Extracellular signal-regulated kinase

STAT:

Signal transducer and activators of transcription

References

  1. Hays SA, Rennaker RL, Kilgard MP (2013) Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res 207:275–299

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120(1):29–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hill JJ, Jin K, Mao XO, Xie L, Greenberg DA (2012) Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats. Proc Natl Acad Sci U S A 109(23):9155–9160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL et al (2012) Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 379(9834):2364–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S et al (2015) Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med 372(6):528–536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Murman DL (2012) Early treatment of Parkinson’s disease: opportunities for managed care. Am J Manag Care 18(7 Suppl):S183–S188

    PubMed  Google Scholar 

  7. Haddad BR, Gu L, Mirtti T, Dagvadorj A, Vogiatzi P, Hoang DT et al (2013) STAT5A/B gene locus undergoes amplification during human prostate cancer progression. Am J Pathol 182(6):2264–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salvatore MF, Disbrow EA, Emborg ME (2014) Peripheral and cognitive signs: delineating the significance of impaired catecholamine metabolism in Parkinson’s disease progression. J Neurochem 131(2):129–133

    Article  CAS  PubMed  Google Scholar 

  9. Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67(6):715–725

    Article  PubMed  PubMed Central  Google Scholar 

  10. Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA (2009) Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol 78(7):677–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. AlDakheel A, Kalia LV, Lang AE (2014) Pathogenesis-targeted, disease-modifying therapies in Parkinson disease. Neurotherapeutics 11(1):6–23

    Article  CAS  PubMed  Google Scholar 

  12. Gatson JW, Simpkins JW, Uteshev VV (2015) High therapeutic potential of positive allosteric modulation of alpha7 nAChRs in a rat model of traumatic brain injury: proof-of-concept. Brain Res Bull 112C:35–41

    Article  CAS  Google Scholar 

  13. Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S et al (2013) The Microglial alpha7-Acetylcholine Nicotinic Receptor Is a Key Element in Promoting Neuroprotection by Inducing Heme Oxygenase-1 via Nuclear Factor Erythroid-2-Related Factor 2. Antioxid Redox Signal 19(11):1135–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Egea J, Buendia I, Parada E, Navarro E, Leon R, Lopez MG (2015) Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol 97(4):463–472

    Article  CAS  PubMed  Google Scholar 

  15. Pavlov VA, Tracey KJ (2015) Neural circuitry and immunity. Immunol Res 63(1-3):38–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dash PK, Zhao J, Kobori N, Redell JB, Hylin MJ, Hood KN et al (2016) Activation of alpha 7 cholinergic nicotinic receptors reduce blood-brain barrier permeability following experimental traumatic brain injury. J Neurosci 36(9):2809–2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uteshev VV, Tenovuo O, Gaidhani N (2016) The cholinergic potential, the vagus nerve and challenges in treatment of traumatic brain injury. Curr Pharm Des 22(14):2083–2092

    Article  CAS  PubMed  Google Scholar 

  18. Uteshev VV (2016) Allosteric modulation of nicotinic acetylcholine receptors: the concept and therapeutic trends. Curr Pharm Des 22(14):1986–1997

    Article  CAS  PubMed  Google Scholar 

  19. Fuenzalida M, Perez MA, Arias HR (2016) Role of nicotinic and muscarinic receptors on synaptic plasticity and neurological diseases. Curr Pharm Des 22(14):2004–2014

    Article  CAS  PubMed  Google Scholar 

  20. Sun F, Johnson SR, Jin K, Uteshev VV (2016) Boosting endogenous resistance of brain to ischemia. Mol Neurobiol. doi:10.1007/s12035-016-9796-3

  21. Mattson MP, Scheff SW (1994) Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma 11(1):3–33

    Article  CAS  PubMed  Google Scholar 

  22. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26(5):248–254

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Reis C, Applegate R 2nd, Stier G, Martin R, Zhang JH (2015) Ischemic conditioning-induced endogenous brain protection: applications pre-, per- or post-stroke. Exp Neurol 272:26–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dezfulian C, Garrett M, Gonzalez NR (2013) Clinical application of preconditioning and postconditioning to achieve neuroprotection. Transl Stroke Res 4(1):19–24

    Article  PubMed  PubMed Central  Google Scholar 

  25. Uteshev VV (2014) The therapeutic promise of positive allosteric modulation of nicotinic receptors. Eur J Pharmacol 727:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Uteshev VV (2016) Editorial: effective and promising treatments for neurological disorders and cancer. Curr Pharm Des 22(14):1979–1980

    Article  CAS  PubMed  Google Scholar 

  27. Tymianski M (2010) Can molecular and cellular neuroprotection be translated into therapies for patients?: yes, but not the way we tried it before. Stroke 41(10 Suppl):S87–S90

    Article  PubMed  Google Scholar 

  28. Uteshev V (2016) Are positive allosteric modulators of alpha7 nAChRs clinically safe? J Neurochem 136(2):217–219

    Article  CAS  PubMed  Google Scholar 

  29. Gould E, Tanapat P (1997) Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience 80(2):427–436

    Article  CAS  PubMed  Google Scholar 

  30. Marlier Q, Verteneuil S, Vandenbosch R, Malgrange B (2015) Mechanisms and functional significance of stroke-induced neurogenesis. Front Neurosci 9:458

    Article  PubMed  PubMed Central  Google Scholar 

  31. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  CAS  PubMed  Google Scholar 

  32. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7(8):617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Benner EJ, Luciano D, Jo R, Abdi K, Paez-Gonzalez P, Sheng H et al (2013) Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature 497(7449):369–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434

    Article  PubMed  Google Scholar 

  36. Robel S, Berninger B, Gotz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12(2):88–104

    Article  CAS  PubMed  Google Scholar 

  37. Hamill CE, Goldshmidt A, Nicole O, McKeon RJ, Brat DJ, Traynelis SF (2005) Special lecture: glial reactivity after damage: implications for scar formation and neuronal recovery. Clin Neurosurg 52:29–44

    PubMed  Google Scholar 

  38. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49(6):377–391

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  40. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  41. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Costa MR, Gotz M, Berninger B (2010) What determines neurogenic competence in glia? Brain Res Rev 63(1–2):47–59

    Article  CAS  PubMed  Google Scholar 

  43. Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R et al (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8(5):e1000373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Blum R, Heinrich C, Sanchez R, Lepier A, Gundelfinger ED, Berninger B et al (2011) Neuronal network formation from reprogrammed early postnatal rat cortical glial cells. Cereb Cortex 21(2):413–424

    Article  PubMed  Google Scholar 

  45. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14(2):188–202

    Article  CAS  PubMed  Google Scholar 

  46. Badan I, Buchhold B, Hamm A, Gratz M, Walker LC, Platt D et al (2003) Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery. J Cereb Blood Flow Metab 23(7):845–854

    Article  CAS  PubMed  Google Scholar 

  47. Yang H, Sun M, Zhao S, Zhu M, Xie Y, Niu C et al (2013) Construction of chiral tertiary alcohol stereocenters via the [2,3]-Meisenheimer rearrangement: enantioselective synthesis of the side-chain acids of homoharringtonine and harringtonine. J Org Chem 78(2):339–346

    Article  CAS  PubMed  Google Scholar 

  48. Lu J, Bradley RA, Zhang SC (2014) Turning reactive glia into functional neurons in the brain. Cell Stem Cell 14(2):133–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saver JL, Albers GW, Dunn B, Johnston KC, Fisher M (2009) Stroke Therapy Academic Industry Roundtable (STAIR) recommendations for extended window acute stroke therapy trials. Stroke 40(7):2594–2600

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI et al (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40(6):2244–2250

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lapchak PA, Zhang JH, Noble-Haeusslein LJ (2013) RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res 4(3):279–285

    Article  PubMed  Google Scholar 

  52. Mir O, Savitz SI (2013) Stem cell therapy in stroke treatment: is it a viable option? Expert Rev Neurother 13(2):119–121

    Article  CAS  PubMed  Google Scholar 

  53. Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G et al (2014) Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 115:92–115

    Article  PubMed  Google Scholar 

  54. Burns TC, Verfaillie CM, Low WC (2009) Stem cells for ischemic brain injury: a critical review. J Comp Neurol 515(1):125–144

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V et al (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24(3):739–747

    Article  CAS  PubMed  Google Scholar 

  56. Stone LL, Grande A, Low WC (2013) Neural repair and neuroprotection with stem cells in ischemic stroke. Brain Sci 3(2):599–614

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L (2014) Stem cell-based therapies for ischemic stroke. BioMed Res Int 2014:468748

    PubMed  PubMed Central  Google Scholar 

  58. Campbell NR, Fernandes CC, Halff AW, Berg DK (2010) Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci 30(26):8734–8744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu Z, Neff RA, Berg DK (2006) Sequential interplay of nicotinic and GABAergic signaling guides neuronal development. Science 314(5805):1610–1613

    Article  CAS  PubMed  Google Scholar 

  60. Schraufstatter IU, DiScipio RG, Khaldoyanidi SK (2009) Alpha 7 subunit of nAChR regulates migration of human mesenchymal stem cells. J Stem Cells 4(4):203–215

    PubMed  Google Scholar 

  61. Narla S, Klejbor I, Birkaya B, Lee YW, Morys J, Stachowiak EK et al (2013) alpha7 nicotinic receptor agonist reactivates neurogenesis in adult brain. Biochem Pharmacol 86(8):1099–1104

    Article  CAS  PubMed  Google Scholar 

  62. Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y et al (2010) Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab 30(3):534–544

    Article  PubMed  Google Scholar 

  63. Davalos A, Alvarez-Sabin J, Castillo J, Diez-Tejedor E, Ferro J, Martinez-Vila E et al (2012) Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet 380(9839):349–357

    Article  CAS  PubMed  Google Scholar 

  64. D’Orlando KJ, Sandage BW Jr (1995) Citicoline (CDP-choline): mechanisms of action and effects in ischemic brain injury. Neurol Res 17(4):281–284

    Article  PubMed  Google Scholar 

  65. Adibhatla RM (2013) Citicoline in stroke and TBI clinical trials. Nat Rev Neurol 9(3):173

    Article  PubMed  Google Scholar 

  66. Schabitz WR, Weber J, Takano K, Sandage BW, Locke KW, Fisher M (1996) The effects of prolonged treatment with citicoline in temporary experimental focal ischemia. J Neurol Sci 138(1–2):21–25

    Article  CAS  PubMed  Google Scholar 

  67. Clark WM, Warach SJ, Pettigrew LC, Gammans RE, Sabounjian LA (1997) A randomized dose-response trial of citicoline in acute ischemic stroke patients. Citicoline Stroke Study Group. Neurology 49(3):671–678

    Article  CAS  PubMed  Google Scholar 

  68. Overgaard K (2014) The effects of citicoline on acute ischemic stroke: a review. J Stroke Cerebrovasc Dis 23(7):1764–1769

    Article  PubMed  Google Scholar 

  69. Alvarez-Sabin J, Santamarina E, Maisterra O, Jacas C, Molina C, Quintana M (2016) Long-term treatment with citicoline prevents cognitive decline and predicts a better quality of life after a first ischemic stroke. Int J Mol Sci 17(3):390

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ottobelli L, Manni GL, Centofanti M, Iester M, Allevena F, Rossetti L (2013) Citicoline oral solution in glaucoma: is there a role in slowing disease progression? Ophthalmologica 229(4):219–226

    Article  CAS  PubMed  Google Scholar 

  71. Parisi V, Centofanti M, Ziccardi L, Tanga L, Michelessi M, Roberti G et al (2015) Treatment with citicoline eye drops enhances retinal function and neural conduction along the visual pathways in open angle glaucoma. Graefes Arch Clin Exp Ophthalmol 253(8):1327–1340

    Article  CAS  PubMed  Google Scholar 

  72. Cotroneo AM, Castagna A, Putignano S, Lacava R, Fanto F, Monteleone F et al (2013) Effectiveness and safety of citicoline in mild vascular cognitive impairment: the IDEALE study. Clin Interv Aging 8:131–137

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gareri P, Castagna A, Cotroneo AM, Putignano S, De Sarro G, Bruni AC (2015) The role of citicoline in cognitive impairment: pharmacological characteristics, possible advantages, and doubts for an old drug with new perspectives. Clin Interv Aging 10:1421–1429

    Article  PubMed  PubMed Central  Google Scholar 

  74. Alvarez-Sabin J, Ortega G, Jacas C, Santamarina E, Maisterra O, Ribo M et al (2013) Long-term treatment with citicoline may improve poststroke vascular cognitive impairment. Cerebrovasc Dis 35(2):146–154

    Article  CAS  PubMed  Google Scholar 

  75. van Meer G, de Kroon AI (2011) Lipid map of the mammalian cell. J Cell Sci 124(Pt 1):5–8

    Article  PubMed  CAS  Google Scholar 

  76. Tolvanen T, Yli-Kerttula T, Ujula T, Autio A, Lehikoinen P, Minn H et al (2010) Biodistribution and radiation dosimetry of [(11)C]choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging 37(5):874–883

    Article  CAS  PubMed  Google Scholar 

  77. Friedman SD, Brooks WM, Jung RE, Hart BL, Yeo RA (1998) Proton MR spectroscopic findings correspond to neuropsychological function in traumatic brain injury. AJNR Am J Neuroradiol 19(10):1879–1885

    CAS  PubMed  Google Scholar 

  78. Kiewert C, Mdzinarishvili A, Hartmann J, Bickel U, Klein J (2010) Metabolic and transmitter changes in core and penumbra after middle cerebral artery occlusion in mice. Brain Res 1312:101–107

    Article  CAS  PubMed  Google Scholar 

  79. Sarter M, Bruno JP, Parikh V, Martinez V, Kozak R, Richards JB (2006) Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. EXS 98:65–86

    CAS  PubMed  Google Scholar 

  80. Rothrock JF, Clark WM, Lyden PD (1995) Spontaneous early improvement following ischemic stroke. Stroke 26(8):1358–1360

    Article  CAS  PubMed  Google Scholar 

  81. Winters C, van Wegen EE, Daffertshofer A, Kwakkel G (2015) Generalizability of the Proportional Recovery Model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair 29(7):614–622

    Article  PubMed  Google Scholar 

  82. Saver JL, Altman H (2012) Relationship between neurologic deficit severity and final functional outcome shifts and strengthens during first hours after onset. Stroke 43(6):1537–1541

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yu TS, Washington PM, Kernie SG (2016) Injury-induced neurogenesis: mechanisms and relevance. Neuroscientist 22(1):61–71

    Article  PubMed  Google Scholar 

  84. Kalappa BI, Sun F, Johnson SR, Jin K, Uteshev VV (2013) A positive allosteric modulator of alpha7 nAChRs augments neuroprotective effects of endogenous nicotinic agonists in cerebral ischaemia. Br J Pharmacol 169(8):1862–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sun F, Jin K, Uteshev VV (2013) A type-II positive allosteric modulator of alpha7 nAChRs reduces brain injury and improves neurological function after focal cerebral ischemia in rats. PLoS One 8(8):e73581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Norman GJ, Morris JS, Karelina K, Weil ZM, Zhang N, Al-Abed Y et al (2011) Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: a role for cholinergic alpha7 nicotinic receptors. J Neurosci 31(9):3446–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guseva MV, Hopkins DM, Scheff SW, Pauly JR (2008) Dietary choline supplementation improves behavioral, histological, and neurochemical outcomes in a rat model of traumatic brain injury. J Neurotrauma 25(8):975–983

    Article  PubMed  PubMed Central  Google Scholar 

  88. Huber KB, Uteshev VV, Pauly JR (2016) Targeting the cholinergic system for neuroprotection and/or enhancement of functional recovery following neurotrauma. Curr Pharm Des 22(14):2072–2082

    Article  CAS  PubMed  Google Scholar 

  89. Buccafusco JJ, Letchworth SR, Bencherif M, Lippiello PM (2005) Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic-pharmacodynamic discordance. Trends Pharmacol Sci 26(7):352–360

    Article  CAS  PubMed  Google Scholar 

  90. Buccafusco JJ, Terry AV Jr, Decker MW, Gopalakrishnan M (2007) Profile of nicotinic acetylcholine receptor agonists ABT-594 and A-582941, with differential subtype selectivity, on delayed matching accuracy by young monkeys. Biochem Pharmacol 74(8):1202–1211

    Article  CAS  PubMed  Google Scholar 

  91. Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE et al (2003) Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 28(3):542–551

    Article  CAS  PubMed  Google Scholar 

  92. Leiser SC, Bowlby MR, Comery TA, Dunlop J (2009) A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther 122(3):302–311

    Article  CAS  PubMed  Google Scholar 

  93. Olincy A, Stevens KE (2007) Treating schizophrenia symptoms with an alpha7 nicotinic agonist, from mice to men. Biochem Pharmacol 74(8):1192–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Arendash GW, Sengstock GJ, Sanberg PR, Kem WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674(2):252–259

    Article  CAS  PubMed  Google Scholar 

  95. Meyer EM, Tay ET, Papke RL, Meyers C, Huang G, de Fiebre CM (1997) Effects of 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) on rat nicotinic receptors and memory-related behaviors. Brain Res 768:49–56

    Article  CAS  PubMed  Google Scholar 

  96. Van Kampen M, Selbach K, Schneider R, Schiegel E, Boess F, Schreiber R (2004) AR-R 17779 improves social recognition in rats by activation of nicotinic alpha7 receptors. Psychopharmacology (Berl) 172(4):375–383

    Article  CAS  Google Scholar 

  97. Woodruff-Pak DS, Li Y, Kem WR (1994) A nicotinic agonist (GTS-21), eyeblink classical conditioning, and nicotinic receptor binding in rabbit brain. Brain Res 645:309–317

    Article  CAS  PubMed  Google Scholar 

  98. Bitner RS, Bunnelle WH, Decker MW, Drescher KU, Kohlhaas KL, Markosyan S et al (2010) In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer’s disease. J Pharmacol Exp Ther 334(3):875–886

    Article  CAS  PubMed  Google Scholar 

  99. Boess FG, De Vry J, Erb C, Flessner T, Hendrix M, Luithle J et al (2007) The novel alpha7 nicotinic acetylcholine receptor agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-7-[2-(methoxy)phenyl]-1-benzofuran-2-carboxamide improves working and recognition memory in rodents. J Pharmacol Exp Ther 321(2):716–725

    Article  CAS  PubMed  Google Scholar 

  100. Ren K, Thinschmidt J, Liu J, Ai L, Papke RL, King MA et al (2007) alpha7 Nicotinic receptor gene delivery into mouse hippocampal neurons leads to functional receptor expression, improved spatial memory-related performance, and tau hyperphosphorylation. Neuroscience 145(1):314–322

    Article  CAS  PubMed  Google Scholar 

  101. Takeuchi H, Yanagida T, Inden M, Takata K, Kitamura Y, Yamakawa K et al (2009) Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson’s disease models. J Neurosci Res 87(2):576–585

    Article  CAS  PubMed  Google Scholar 

  102. Brown KL, Comalli DM, Biasi MD, Woodruff-Pak DS (2010) Trace eyeblink conditioning is impaired in alpha7 but not in beta2 nicotinic acetylcholine receptor knockout mice. Front Behav Neurosci 4:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Hurst RS, Hajos M, Raggenbass M, Wall TM, Higdon NR, Lawson JA et al (2005) A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 25(17):4396–4405

    Article  CAS  PubMed  Google Scholar 

  104. Bencherif M, Lippiello PM, Lucas R, Marrero MB (2011) Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci 68(6):931–949

    Article  CAS  PubMed  Google Scholar 

  105. Targowska-Duda KM, Wnorowski A, Budzynska B, Jozwiak K, Biala G, Arias HR (2016) The positive allosteric modulator of alpha7 nicotinic acetylcholine receptors, 3-furan-2-yl-N-p-tolyl-acrylamide, enhances memory processes and stimulates ERK1/2 phosphorylation in mice. Behav Brain Res 302:142–151

    Article  CAS  PubMed  Google Scholar 

  106. Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K, Lin X et al (2007) Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med 35(4):1139–1144

    Article  CAS  PubMed  Google Scholar 

  107. Lopez NE, Krzyzaniak MJ, Costantini TW, Putnam J, Hageny AM, Eliceiri B et al (2012) Vagal nerve stimulation decreases blood-brain barrier disruption after traumatic brain injury. J Trauma Acute Care Surg 72(6):1562–1566

    Article  PubMed  Google Scholar 

  108. Gurun MS, Parker R, Eisenach JC, Vincler M (2009) The effect of peripherally administered CDP-choline in an acute inflammatory pain model: the role of alpha7 nicotinic acetylcholine receptor. Anesth Analg 108(5):1680–1687

    Article  CAS  PubMed  Google Scholar 

  109. Knott V, de la Salle S, Smith D, Choueiry J, Impey D, Smith M et al (2015) Effects of acute CDP-choline treatment on resting state brain oscillations in healthy volunteers. Neurosci Lett 591:121–125

    Article  CAS  PubMed  Google Scholar 

  110. Uslu G, Savci V, Buyukuysal LR, Goktalay G (2014) CDP-choline attenuates scopolamine induced disruption of prepulse inhibition in rats: involvement of central nicotinic mechanism. Neurosci Lett 569:153–157

    Article  CAS  PubMed  Google Scholar 

  111. Lendvai B, Kassai F, Szajli A, Nemethy Z (2013) alpha7 nicotinic acetylcholine receptors and their role in cognition. Brain Res Bull 93:86–96

    Article  CAS  PubMed  Google Scholar 

  112. Wallace TL, Porter RH (2011) Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol 82(8):891–903

    Article  CAS  PubMed  Google Scholar 

  113. Umana IC, Daniele CA, McGehee DS (2013) Neuronal nicotinic receptors as analgesic targets: it’s a winding road. Biochem Pharmacol 86(8):1208–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Akaike A, Takada-Takatori Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40(1–2):211–216

    Article  CAS  PubMed  Google Scholar 

  115. Del Barrio L, Martin-de-Saavedra MD, Romero A, Parada E, Egea J, Avila J et al (2011) Neurotoxicity induced by okadaic acid in the human neuroblastoma SH-SY5Y line can be differentially prevented by alpha7 and beta2* nicotinic stimulation. Toxicol Sci 123(1):193–205

    Article  PubMed  CAS  Google Scholar 

  116. Egea J, Rosa AO, Sobrado M, Gandia L, Lopez MG, Garcia AG (2007) Neuroprotection afforded by nicotine against oxygen and glucose deprivation in hippocampal slices is lost in alpha7 nicotinic receptor knockout mice. Neuroscience 145(3):866–872

    Article  CAS  PubMed  Google Scholar 

  117. Kaneko S, Maeda T, Kume T, Kochiyama H, Akaike A, Shimohama S et al (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors. Brain Res 765(1):135–140

    Article  CAS  PubMed  Google Scholar 

  118. Li Y, Papke RL, He YJ, Millard WJ, Meyer EM (1999) Characterization of the neuroprotective and toxic effects of alpha7 nicotinic receptor activation in PC12 cells. Brain Res 830(2):218–225

    Article  CAS  PubMed  Google Scholar 

  119. Roncarati R, Scali C, Comery TA, Grauer SM, Aschmi S, Bothmann H et al (2009) Procognitive and neuroprotective activity of a novel alpha7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders. J Pharmacol Exp Ther 329(2):459–468

    Article  CAS  PubMed  Google Scholar 

  120. Shimohama S, Greenwald DL, Shafron DH, Akaike A, Maeda T, Kaneko S et al (1998) Nicotinic à7 receptors protect against glutamate neurotoxicity and neuronal ischemic damage. Brain Res 779:359–363

    Article  CAS  PubMed  Google Scholar 

  121. Smith DC, Modglin AA, Roosevelt RW, Neese SL, Jensen RA, Browning RA et al (2005) Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J Neurotrauma 22(12):1485–1502

    Article  PubMed  PubMed Central  Google Scholar 

  122. Smith DC, Tan AA, Duke A, Neese SL, Clough RW, Browning RA et al (2006) Recovery of function after vagus nerve stimulation initiated 24 hours after fluid percussion brain injury. J Neurotrauma 23(10):1549–1560

    Article  PubMed  Google Scholar 

  123. Clough RW, Neese SL, Sherill LK, Tan AA, Duke A, Roosevelt RW et al (2007) Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation. Neuroscience 147(2):286–293

    Article  CAS  PubMed  Google Scholar 

  124. Verbois SL, Scheff SW, Pauly JR (2003) Chronic nicotine treatment attenuates alpha 7 nicotinic receptor deficits following traumatic brain injury. Neuropharmacology 44(2):224–233

    Article  CAS  PubMed  Google Scholar 

  125. McLean SL, Idris NF, Grayson B, Gendle DF, Mackie C, Lesage AS et al (2012) PNU-120596, a positive allosteric modulator of alpha7 nicotinic acetylcholine receptors, reverses a sub-chronic phencyclidine-induced cognitive deficit in the attentional set-shifting task in female rats. J Psychopharmacol 26(9):1265–1270

    Article  PubMed  CAS  Google Scholar 

  126. Thomsen MS, El-Sayed M, Mikkelsen JD (2011) Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats. PLoS One 6(11):e27014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Callahan PM, Hutchings EJ, Kille NJ, Chapman JM, Terry AV Jr (2013) Positive allosteric modulator of alpha 7 nicotinic-acetylcholine receptors, PNU-120596 augments the effects of donepezil on learning and memory in aged rodents and non-human primates. Neuropharmacology 67:201–212

    Article  CAS  PubMed  Google Scholar 

  128. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D et al (2006) Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 63(6):630–638

    Article  CAS  PubMed  Google Scholar 

  129. Freitas K, Carroll FI, Damaj MI (2012) The antinociceptive effects of nicotinic receptors alpha7-positive allosteric modulators in murine acute and tonic pain models. J Pharmacol Exp Ther 344(1):264–275

    Article  PubMed  CAS  Google Scholar 

  130. Freitas K, Ghosh S, Ivy Carroll F, Lichtman AH, Imad DM (2013) Effects of alpha 7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models. Neuropharmacology 65:156–164

    Article  CAS  PubMed  Google Scholar 

  131. Munro G, Storm A, Hansen MK, Dyhr H, Marcher L, Erichsen HK et al (2012) The combined predictive capacity of rat models of algogen-induced and neuropathic hypersensitivity to clinically used analgesics varies with nociceptive endpoint and consideration of locomotor function. Pharmacol Biochem Behav 101(3):465–478

    Article  CAS  PubMed  Google Scholar 

  132. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    Article  CAS  PubMed  Google Scholar 

  133. Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9(6):418–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Oke SL, Tracey KJ (2009) The inflammatory reflex and the role of complementary and alternative medical therapies. Ann N Y Acad Sci 1172:172–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vida G, Pena G, Deitch EA, Ulloa L (2011) alpha7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J Immunol 186(7):4340–4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388

    Article  CAS  PubMed  Google Scholar 

  137. Pruitt DT, Schmid AN, Kim LJ, Abe CM, Trieu JL, Choua C et al (2016) Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J Neurotrauma 33(9):871–879

    Article  PubMed  Google Scholar 

  138. Hays SA, Khodaparast N, Hulsey DR, Ruiz A, Sloan AM, Rennaker RL 2nd et al (2014) Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 45(10):3097–3100

    Article  PubMed  PubMed Central  Google Scholar 

  139. Khodaparast N, Hays SA, Sloan AM, Fayyaz T, Hulsey DR, Rennaker RL 2nd et al (2014) Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke. Neurorehabil Neural Repair 28(7):698–706

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H et al (2002) Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 195(6):781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wanderas MH, Moum BA, Hoivik ML, Hovde O (2016) Predictive factors for a severe clinical course in ulcerative colitis: results from population-based studies. World J Gastrointest Pharmacol Ther 7(2):235–241

    Article  PubMed  PubMed Central  Google Scholar 

  142. Herrero MT, Estrada C, Maatouk L, Vyas S (2015) Inflammation in Parkinson’s disease: role of glucocorticoids. Front Neuroanat 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kloting N, Bluher M (2014) Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord 15(4):277–287

    Article  PubMed  CAS  Google Scholar 

  144. Myhre O, Utkilen H, Duale N, Brunborg G, Hofer T (2013) Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxid Med Cell Longev 2013:726954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Gomez-Mejiba SE, Zhai Z, Akram H, Pye QN, Hensley K, Kurien BT et al (2009) Inhalation of environmental stressors & chronic inflammation: autoimmunity and neurodegeneration. Mutat Res 674(1–2):62–72

    Article  CAS  PubMed  Google Scholar 

  146. Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208(1):1–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518

    Article  CAS  PubMed  Google Scholar 

  148. Yue Y, Liu R, Cheng W, Hu Y, Li J, Pan X et al (2015) GTS-21 attenuates lipopolysaccharide-induced inflammatory cytokine production in vitro by modulating the Akt and NF-kappaB signaling pathway through the alpha7 nicotinic acetylcholine receptor. Int Immunopharmacol 29(2):504–512

    Article  CAS  PubMed  Google Scholar 

  149. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J et al (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89(2):337–343

    Article  CAS  PubMed  Google Scholar 

  150. Teaktong T, Graham A, Court J, Perry R, Jaros E, Johnson M et al (2003) Alzheimer’s disease is associated with a selective increase in alpha7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia 41(2):207–211

    Article  PubMed  Google Scholar 

  151. Shi FD, Piao WH, Kuo YP, Campagnolo DI, Vollmer TL, Lukas RJ (2009) Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol 182(3):1730–1739

    Article  CAS  PubMed  Google Scholar 

  152. Han Z, Shen F, He Y, Degos V, Camus M, Maze M et al (2014) Activation of alpha-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress. PLoS One 9(8):e105711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Shen JX, Yakel JL (2012) Functional alpha7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices. J Mol Neurosci 48(1):14–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu H, Li L, Su X (2014) Vagus nerve through alpha7 nAChR modulates lung infection and inflammation: models, cells, and signals. BioMed Res Int 2014:283525

    PubMed  PubMed Central  Google Scholar 

  155. Munro G, Hansen R, Erichsen H, Timmermann D, Christensen J, Hansen H (2012) The alpha7 nicotinic ACh receptor agonist compound B and positive allosteric modulator PNU-120596 both alleviate inflammatory hyperalgesia and cytokine release in the rat. Br J Pharmacol 167(2):421–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR (2000) Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci 85(1–3):49–59

    Article  CAS  PubMed  Google Scholar 

  157. Szelenyi J, Vizi ES (2007) The catecholamine cytokine balance: interaction between the brain and the immune system. Ann N Y Acad Sci 1113:311–324

    Article  CAS  PubMed  Google Scholar 

  158. Pruitt D, Hays S, Schmid A, Choua C, Kim L, Trieu J et al (2014) Controlled-cortical impact reduces volitional forelimb strength in rats. Brain Res 1582:91–98

    Article  CAS  PubMed  Google Scholar 

  159. Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM et al (2013) Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci U S A 110(9):3573–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR (2002) Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry 7(6):525–535

    Article  CAS  PubMed  Google Scholar 

  161. Janowsky DS, el-Yousef MK, Davis JM (1974) Acetylcholine and depression. Psychosom Med 36(3):248–257

    Article  CAS  PubMed  Google Scholar 

  162. Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A et al (2012) Persistent beta2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. Am J Psychiatry 169(8):851–859

    Article  PubMed  PubMed Central  Google Scholar 

  163. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6(10):775–786

    Article  CAS  PubMed  Google Scholar 

  164. Kox M, Pompe JC, Pickkers P, Hoedemaekers CW, van Vugt AB, van der Hoeven JG (2008) Increased vagal tone accounts for the observed immune paralysis in patients with traumatic brain injury. Neurology 70(6):480–485

    Article  CAS  PubMed  Google Scholar 

  165. Engel O, Akyuz L, da Costa Goncalves AC, Winek K, Dames C, Thielke M et al (2015) Cholinergic pathway suppresses pulmonary innate immunity facilitating pneumonia after stroke. Stroke 46(11):3232–3240

    Article  CAS  PubMed  Google Scholar 

  166. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859

    Article  CAS  PubMed  Google Scholar 

  167. Cabrera SM, Chavez CM, Corley SR, Kitto MR, Butt AE (2006) Selective lesions of the nucleus basalis magnocellularis impair cognitive flexibility. Behav Neurosci 120(2):298–306

    Article  PubMed  Google Scholar 

  168. Muir JL, Everitt BJ, Robbins TW (1994) AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. J Neurosci 14(4):2313–2326

    CAS  PubMed  Google Scholar 

  169. Muir JL, Page KJ, Sirinathsinghji DJ, Robbins TW, Everitt BJ (1993) Excitotoxic lesions of basal forebrain cholinergic neurons: effects on learning, memory and attention. Behav Brain Res 57(2):123–131

    Article  CAS  PubMed  Google Scholar 

  170. Demeter E, Hernandez-Garcia L, Sarter M, Lustig C (2011) Challenges to attention: a continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. Neuroimage 54(2):1518–1529

    Article  PubMed  Google Scholar 

  171. Bartus RT, Dean IRL, Beer B, Lippa A (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    Article  CAS  PubMed  Google Scholar 

  172. Petersen RC (1977) Scopolamine induced learning failures in man. Psychopharmacology (Berl) 52(3):283–289

    Article  CAS  Google Scholar 

  173. Ghoneim MM, Mewaldt SP (1977) Studies on human memory: the interactions of diazepam, scopolamine, and physostigmine. Psychopharmacology (Berl) 52(1):1–6

    Article  CAS  Google Scholar 

  174. Sunderland T, Tariot PN, Weingartner H, Murphy DL, Newhouse PA, Mueller EA et al (1986) Pharmacologic modelling of Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10(3–5):599–610

    Article  CAS  PubMed  Google Scholar 

  175. Newhouse PA, Potter A, Corwin J, Lenox R (1992) Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacology (Berl) 108(4):480–484

    Article  CAS  Google Scholar 

  176. Zurkovsky L, Taylor WD, Newhouse PA (2013) Cognition as a therapeutic target in late-life depression: potential for nicotinic therapeutics. Biochem Pharmacol 86(8):1133–1144

    Article  CAS  PubMed  Google Scholar 

  177. Levin ED, McClernon FJ, Rezvani AH (2006) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl) 184(3–4):523–539

    Article  CAS  Google Scholar 

  178. Arias HR, Ravazzini F, Targowska-Duda KM, Kaczor AA, Feuerbach D, Boffi JC et al (2016) Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors affect neither the function of other ligand- and voltage-gated ion channels and acetylcholinesterase, nor beta-amyloid content. Int J Biochem Cell Biol 76:19–30

    Article  CAS  PubMed  Google Scholar 

  179. Andersen ND, Nielsen BE, Corradi J, Tolosa MF, Feuerbach D, Arias HR et al (2016) Exploring the positive allosteric modulation of human alpha7 nicotinic receptors from a single-channel perspective. Neuropharmacology 107:189–200

    Article  CAS  PubMed  Google Scholar 

  180. Stevens KE, Zheng L, Floyd KL, Stitzel JA (2015) Maximizing the effect of an alpha7 nicotinic receptor PAM in a mouse model of schizophrenia-like sensory inhibition deficits. Brain Res 1611:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nikiforuk A, Kos T, Potasiewicz A, Popik P (2015) Positive allosteric modulation of alpha 7 nicotinic acetylcholine receptors enhances recognition memory and cognitive flexibility in rats. Eur Neuropsychopharmacol 25(8):1300–1313

    Article  CAS  PubMed  Google Scholar 

  182. Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  CAS  PubMed  Google Scholar 

  183. McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–546

    Article  CAS  PubMed  Google Scholar 

  184. Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M et al (1997) Comparison of the regional expression of nicotinic acetylcholine receptor alpha7 mRNA and [125I]-alpha-bungarotoxin binding in human postmortem brain. J Comp Neurol 387(3):385–398

    Article  CAS  PubMed  Google Scholar 

  185. Whiteaker P, Davies AR, Marks MJ, Blagbrough IS, Potter BV, Wolstenholme AJ et al (1999) An autoradiographic study of the distribution of binding sites for the novel alpha7-selective nicotinic radioligand [3H]-methyllycaconitine in the mouse brain. Eur J Neurosci 11(8):2689–2696

    Article  CAS  PubMed  Google Scholar 

  186. Clarke PB (1993) Nicotinic receptors in mammalian brain: localization and relation to cholinergic innervation. Prog Brain Res 98:77–83

    Article  CAS  PubMed  Google Scholar 

  187. Hao J, Simard AR, Turner GH, Wu J, Whiteaker P, Lukas RJ et al (2010) Attenuation of CNS inflammatory responses by nicotine involves alpha7 and non-alpha7 nicotinic receptors. Exp Neurol 227(1):110–119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Koval L, Lykhmus O, Zhmak M, Khruschov A, Tsetlin V, Magrini E et al (2011) Differential involvement of alpha4beta2, alpha7 and alpha9alpha10 nicotinic acetylcholine receptors in B lymphocyte activation in vitro. Int J Biochem Cell Biol 43(4):516–524

    Article  CAS  PubMed  Google Scholar 

  189. Kawashima K, Fujii T (2004) Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front Biosci 9:2063–2085

    Article  CAS  PubMed  Google Scholar 

  190. De Rosa MJ, Dionisio L, Agriello E, Bouzat C, Esandi MC (2009) Alpha 7 nicotinic acetylcholine receptor modulates lymphocyte activation. Life Sci 85(11–12):444–449

    Article  PubMed  CAS  Google Scholar 

  191. Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A 98(7):4148–4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shin SS, Dixon CE (2015) Alterations in cholinergic pathways and therapeutic strategies targeting cholinergic system after traumatic brain injury. J Neurotrauma 32(19):1429–1440

    Article  PubMed  PubMed Central  Google Scholar 

  193. Echeverria V, Yarkov A, Aliev G (2016) Positive modulators of the alpha7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer’s disease. Prog Neurobiol

    Google Scholar 

  194. Kalkman HO, Feuerbach D (2016) Modulatory effects of alpha7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 73(13):2511–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Baez-Pagan CA, Delgado-Velez M, Lasalde-Dominicci JA (2015) Activation of the macrophage alpha7 nicotinic acetylcholine receptor and control of inflammation. J Neuroimmune Pharmacol 10(3):468–476

    Article  PubMed  PubMed Central  Google Scholar 

  196. Quik M, Zhang D, McGregor M, Bordia T (2015) Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem Pharmacol 97(4):399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shaw S, Bencherif M, Marrero MB (2002) Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against Abeta-(1-42) amyloid. J Biol Chem 277(47):44920–44924

    Article  CAS  PubMed  Google Scholar 

  198. Thomsen MS, Hansen HH, Timmerman DB, Mikkelsen JD (2010) Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. Curr Pharm Des 16(3):323–343

    Article  CAS  PubMed  Google Scholar 

  199. Bok J, Wang Q, Huang J, Green SH (2007) CaMKII and CaMKIV mediate distinct prosurvival signaling pathways in response to depolarization in neurons. Mol Cell Neurosci 36(1):13–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ et al (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6(8):844–851

    Article  PubMed  CAS  Google Scholar 

  201. Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H et al (2001) alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276(17):13541–13546

    CAS  PubMed  Google Scholar 

  202. Toulorge D, Guerreiro S, Hild A, Maskos U, Hirsch EC, Michel PP (2011) Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2+. FASEB J 25(8):2563–2573

    Article  CAS  PubMed  Google Scholar 

  203. Ren K, Puig V, Papke RL, Itoh Y, Hughes JA, Meyer EM (2005) Multiple calcium channels and kinases mediate alpha7 nicotinic receptor neuroprotection in PC12 cells. J Neurochem 94(4):926–933

    Article  CAS  PubMed  Google Scholar 

  204. Toborek M, Son KW, Pudelko A, King-Pospisil K, Wylegala E, Malecki A (2007) ERK 1/2 signaling pathway is involved in nicotine-mediated neuroprotection in spinal cord neurons. J Cell Biochem 100(2):279–292

    Article  CAS  PubMed  Google Scholar 

  205. Gubbins EJ, Gopalakrishnan M, Li J (2010) Alpha7 nAChR-mediated activation of MAP kinase pathways in PC12 cells. Brain Res 1328:1–11

    Article  CAS  PubMed  Google Scholar 

  206. Ashpole NM, Chawla AR, Martin MP, Brustovetsky T, Brustovetsky N, Hudmon A (2013) Loss of calcium/calmodulin-dependent protein kinase II activity in cortical astrocytes decreases glutamate uptake and induces neurotoxic release of ATP. J Biol Chem 288(20):14599–14611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Coultrap SJ, Vest RS, Ashpole NM, Hudmon A, Bayer KU (2011) CaMKII in cerebral ischemia. Acta Pharmacol Sin 32(7):861–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sawe N, Steinberg G, Zhao H (2008) Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 86(8):1659–1669

    Article  CAS  PubMed  Google Scholar 

  209. Liu Y, Hu J, Wu J, Zhu C, Hui Y, Han Y, et al. (2012) alpha7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J Neuroinflammation 9:98

    Google Scholar 

  210. White SH, Brisson CD, Andrew RD (2012) Examining protection from anoxic depolarization by the drugs dibucaine and carbetapentane using whole cell recording from CA1 neurons. J Neurophysiol 107(8):2083–2095

    Article  CAS  PubMed  Google Scholar 

  211. Uteshev VV, Patlak JB, Pennefather PS (2000) Analysis and implications of equivalent uniform approximations of nonuniform unitary synaptic systems. Biophys J 79(6):2825–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gallowitsch-Puerta M, Pavlov VA (2007) Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci 80(24–25):2325–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22(7):2443–2450

    CAS  PubMed  Google Scholar 

  214. Skok MV (2009) Editorial: to channel or not to channel? Functioning of nicotinic acetylcholine receptors in leukocytes. J Leukoc Biol 86(1):1–3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank the William and Ella Owens Foundation for support and Dr. William Culp for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Uteshev Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uteshev, V.V. (2017). Cholinergic Protection in Ischemic Brain Injury. In: Lapchak, P., Zhang, J. (eds) Neuroprotective Therapy for Stroke and Ischemic Disease. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45345-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45345-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45344-6

  • Online ISBN: 978-3-319-45345-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics