Skip to main content

Polarization of Microglia/Macrophages in Brain Ischaemia: Relevance for Stroke Therapy

  • Chapter
  • First Online:
  • 1318 Accesses

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

The innate immune system plays a pivotal role in ischemic stroke pathobiology, involving soluble and cellular mediators activated locally or recruited from the periphery. Upon injury, subtle modifications of the local environment trigger a rapid activation of microglia that peaks few days after the insult and may persist for several weeks. Initially, the alternatively activated M2 phenotype predominates, whereas, upon priming by ischemic neurons, microglia shift towards the M1 phenotype characterized by reduced phagocytic capacity and release of inflammatory cytokines. Maximally activated microglia can eventually turn into a round amoeboid phenotype morphologically indistinguishable from blood-derived macrophages.

A typical hallmark of cerebral ischaemia is the increased permeability of cerebral microvessels that, together with the upregulation of adhesion molecules on post-capillary venules and the choroid plexus, facilitate brain recruitment of leukocytes. Bone marrow-derived monocytes rapidly extravasate via a chemokine receptor 2 [CCR2]-dependent pathway and, once in the injured tissue, differentiate into non-inflammatory M2 macrophages, mediating neuroprotection and repair of the neurovascular unit. M2 macrophages peak few days after the insult in the core region, whereas the pro-inflammatory M1 phenotype predominates in the peri-infarct areas to gradually increase in number in the core, outnumbering M2 cells over time. The dualistic role exerted by microglia/macrophages suggests that a mere inhibition of their activation/recruitment might not represent a promising strategy to rescue ischemic brain injury. By contrast, as thoroughly reviewed here, a rational modulation of their polarization status, aimed at adjusting the M1/M2 ratio coherently with the spatio-temporal progression of injury, has recently been validated in animal models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATP:

Adenosine 5′-triphosphate

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

CB:

Cannabinoid receptor

CCL2:

Monocyte chemoattractant protein-1

CCR2:

CC chemokine receptor 2

CNS:

Central nervous system

CXCR1:

Fractalkine receptor

DAMPs:

Danger-associated molecular patterns

GDNF:

Glia-derived neurotrophic factor

GFP:

Green fluorescent protein

IGF:

Insulin-like growth factor

IL:

Interleukin

IL-1R:

Interleukin-1 receptor

INF:

Interferon

Ly6C:

Lymphocyte antigen 6 complex, locus C

MCAo:

Middle cerebral artery occlusion

MCP:

Monocyte chemoattractant protein

MHC:

Major histocompatibility complex

MIP:

Macrophage inflammatory protein

miRNAs:

MicroRNAs

MMPs:

Matrix metalloproteinases

MR:

Mineralcorticoid receptor

nAChR:

Nicotinic acetylcholine receptor

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PBMCs:

Peripheral blood mononuclear cells

PPAR:

Peroxisome proliferator-activated receptor

PRRs:

Pattern recognition receptors

ROS:

Reactive oxygen species

RXR:

Retinoid X receptor

SR-A:

Class A scavenger receptor

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TNF:

Tumour necrosis factor

TREM:

Triggering receptor expressed on myeloid cells

USPIO:

Ultrasmall superparamagnetic iron oxide particles

References

  1. Amantea D (2016) Editorial overview: neurosciences: brain and immunity: new targets for neuroprotection. Curr Opin Pharmacol 26:1–4

    Google Scholar 

  2. Chhabria K, Chakravarthy VS (2016) Low-dimensional models of “neuro-glio-vascular unit” for describing neural dynamics under normal and energy-starved conditions. Front Neurol 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ren K, Dubner R (2016) Activity-triggered tetrapartite neuron-glial interactions following peripheral injury. Curr Opin Pharmacol 26:16–25

    Article  CAS  PubMed  Google Scholar 

  4. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431

    Article  CAS  PubMed  Google Scholar 

  5. Dityatev A, Rusakov DA (2011) Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 21(2):353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dirnagl U (2012) Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci 1268(1):21–25

    Article  PubMed  Google Scholar 

  7. Del Zoppo GJ (2010) The neurovascular unit in the setting of stroke. J Intern Med 267(2):156–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanism to translation. Nat Med 17(7):796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amantea D, Tassorelli C, Petrelli F, Certo M, Bezzi P, Micieli G et al (2014) Understanding the multifaceted role of inflammatory mediators in ischemic stroke. Curr Med Chem 21(18):2098–2117

    Article  CAS  PubMed  Google Scholar 

  10. Tang Y, Xu H, Du X, Lit L, Walker W, Lu A et al (2006) Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans : a microarray study. J Cereb Blood Flow Metab 26(8):1089–1102

    Article  CAS  PubMed  Google Scholar 

  11. Barr TL, Conley Y, Ding J, Dillman A, Warach S, Singleton A et al (2010) Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology 75(11):1009–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oh SH, Kim OJ, Shin DA, Song J, Yoo H, Kim YK et al (2012) Alteration of immunologic responses on peripheral blood in the acute phase of ischemic stroke: blood genomic profiling study. J Neuroimmunol 249(1-2):60–65

    Article  CAS  PubMed  Google Scholar 

  13. Brooks S, Van Gilder R, Frisbee J, Barr T (2014) Genomics for the advancement of clinical translation in stroke. In: Micieli G, Amantea D (eds) Rational basis for clinical translation in stroke therapy. CRC, Boca Raton, pp 123–136

    Google Scholar 

  14. Fassbender K, Rossol S, Kammer T, Daffertshofer M, Wirth S, Dollman M et al (1994) Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J Neurol Sci 122(2):135–139

    Article  CAS  PubMed  Google Scholar 

  15. Smith CJ, Emsley HCA, Gavin CM, Georgiou RF, Vail A, Barberan EM et al (2004) Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Whiteley W, Jackson C, Lewis S, Lowe G, Rumley A, Sandercock P et al (2009) Inflammatory markers and poor outcome after stroke: a prospective cohort study and systematic review of interleukin-6. PLoS Med 6(9), e1000145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Basic Kes V, Simundic A-M, Nikolac N, Topic E, Demarin V (2008) Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin Biochem 41(16-17):1330–1334

    Article  CAS  PubMed  Google Scholar 

  18. Chang L-T, Yuen C-M, Liou C-W, Lu C-H, Chang W-N, Youssef AA et al (2010) Link between interleukin-10 level and outcome after ischemic stroke. Neuroimmunomodulation 17(4):223–228

    Article  CAS  PubMed  Google Scholar 

  19. Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M et al (2015) Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 9:147

    Article  PubMed  PubMed Central  Google Scholar 

  20. Atkinson C, Zhu H, Qiao F, Varela JC, Yu J, Song H et al (2006) Complement-dependent P-selectin expression and injury following ischemic stroke. J Immunol 177:7266–7274

    Article  CAS  PubMed  Google Scholar 

  21. Nieswandt B, Pleines I, Bender M (2011) Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost 1:92–104

    Article  CAS  Google Scholar 

  22. Dodson RF, Chu LW, Welch KM, Achar VS (1977) Acute tissue response to cerebral ischemia in the gerbil: an ultrastructural study. J Neurol Sci 33:161–170

    Article  CAS  PubMed  Google Scholar 

  23. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shichita T, Ito M, Yoshimura A (2014) Post-ischemic inflammation regulates neural damage and protection. Front Cell Neurosci 8:319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Viscomi MT, Florenzano F, Latini L, Amantea D, Bernardi G, Molinari M (2008) Methylprednisolone treatment delays remote cell death after focal brain lesion. Neuroscience 154(4):1267–1282

    Article  CAS  PubMed  Google Scholar 

  26. Amantea D, Bagetta G, Tassorelli C, Mercuri NB, Corasaniti MT (2010) Identification of distinct cellular pools of interleukin-1beta during the evolution of the neuroinflammatory response induced by transient middle cerebral artery occlusion in the brain of rat. Brain Res 1313:259–269

    Article  CAS  PubMed  Google Scholar 

  27. del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98:1276–1283

    Google Scholar 

  28. McColl B, Rothwell NJ, Allan SM (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28:9451–9462

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke 35:2576–2581

    Google Scholar 

  30. Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10:1377–1386

    Article  CAS  PubMed  Google Scholar 

  31. Stanimirovic DB, Ball R, Durkin JP (1997) Stimulation of glutamate uptake and Na, K-ATPase activity in rat astrocytes exposed to ischemia-like insults. Glia 19:123–134

    Article  CAS  PubMed  Google Scholar 

  32. del Zoppo GJ (2009) Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 158:972–982

    Article  PubMed  CAS  Google Scholar 

  33. Kinoshita A, Yamada K, Kohmura E, Hayakawa T (1990) Effect of astrocyte-derived factors on ischemic brain edema induced by rat MCA occlusion. APMIS 98:851–857

    Article  CAS  PubMed  Google Scholar 

  34. Shen LH, Li Y, Chopp M (2010) Astrocytic endogenous glial cell derived neurotrophic factor production is enhanced by bone marrow stromal cell transplantation in the ischemic boundary zone after stroke in adult rats. Glia 58:1074–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miyamoto N, Maki T, Shindo A, Liang AC, Maeda M, Egawa N et al (2015) Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J Neurosci 35:14002–14008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Amantea D, Tassorelli C, Russo R, Petrelli F, Morrone LA, Bagetta G et al (2011) Neuroprotection by leptin in a rat model of permanent cerebral ischemia: effects on STAT3 phosphorylation in discrete cells of the brain. Cell Death Dis 2, e238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rusnakova V, Honsa P, Dzamba D, Ståhlberg A, Kubista M, Anderova M (2013) Heterogeneity of astrocytes: from development to injury—single cell gene expression. PLoS One 8(8), e69734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gliem M, Krammes K, Liaw L, Van Rooijen N, Hartung H, Jander S (2015) Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia 63:2198–2207

    Article  PubMed  Google Scholar 

  40. Kang SS, Keasey MP, Cai J, Hagg T (2012) Loss of neuron-astroglial interaction rapidly induces protective CNTF expression after stroke in mice. J Neurosci 32:9277–9287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122(4):1164–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch U-K, Mack M et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553

    Article  CAS  PubMed  Google Scholar 

  44. Dénes A, Ferenczi S, Halász J, Környei Z, Kovács KJ (2008) Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 28(10):1707–1721

    Article  PubMed  CAS  Google Scholar 

  45. Dentesano G, Serratosa J, Tusell JM, Ramón P, Valente T, Saura J et al (2014) CD200R1 and CD200 expression are regulated by PPAR-γ in activated glial cells. Glia 62(6):982–998

    Article  PubMed  Google Scholar 

  46. Ma Y, Wang J, Wang Y, Yang G (2016) The biphasic function of microglia in ischemic stroke. Prog Neurobiol pii: S0301-0082(15)30070-8. doi:10.1016/j.pneurobio

  47. Melani A, Amadio S, Gianfriddo M, Vannucchi MG, Volontè C, Bernardi G et al (2006) P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 26(7):974–982

    Article  CAS  PubMed  Google Scholar 

  48. Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Takahashi H, Imai Y et al (2007) Expression of CD200 by macrophage-like cells in ischemic core of rat brain after transient middle cerebral artery occlusion. Neurosci Lett 418(1):44–48

    Article  CAS  PubMed  Google Scholar 

  49. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100(14):8514–8519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL et al (2015) Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci 35(8):3384–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zarruk JG, Fernández-López D, García-Yébenes I, García-Gutiérrez MS, Vivancos J, Nombela F et al (2012) Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 43(1):211–219

    Article  CAS  PubMed  Google Scholar 

  52. Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J (2015) Neuronal Interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci 35(32):11281–11291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070

    Article  CAS  PubMed  Google Scholar 

  54. da Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C et al (2014) The impact of microglial activation on blood–brain barrier in brain diseases. Front Cell Neurosci 8:362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhang Z, Chopp M, Powers C (1997) Temporal profile of microglial response following transient (2 h) middle cerebral artery occlusion. Brain Res 744(2):189–198

    Article  CAS  PubMed  Google Scholar 

  56. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56(2):149–171

    Article  CAS  PubMed  Google Scholar 

  57. Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA et al (2007) Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab 27(12):1941–1953

    Article  CAS  PubMed  Google Scholar 

  58. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB (2005) Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24(2):591–595

    Article  PubMed  Google Scholar 

  59. Price CJS, Wang D, Menon DK, Guadagno JV, Cleij M, Fryer T et al (2006) Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 37(7):1749–1753

    Article  PubMed  Google Scholar 

  60. Zinnhardt B, Viel T, Wachsmuth L, Vrachimis A, Wagner S, Breyholz H et al (2015) Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke. J Cereb Blood Flow Metab 35:1711–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hailer NP (2008) Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells. Prog Neurobiol 84:211–233

    Article  CAS  PubMed  Google Scholar 

  62. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EBB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183(1):25–33

    Article  PubMed  Google Scholar 

  63. Davis EJ, Foster TD, Thomas WE (1994) Cellular forms and functions of brain microglia. Brain Res Bull 34(1):73–78

    Article  CAS  PubMed  Google Scholar 

  64. Jung S, Schwartz M (2012) Non-identical twins—microglia and monocyte-derived macrophages in acute injury and autoimmune inflammation. Front Immunol 3:89

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schroeter M, Jander S, Huitinga I, Witte OW, Stoll G (1997) Phagocytic response in photochemically induced infarction of rat cerebral cortex. The role of resident microglia. Stroke 28:382–386

    Article  CAS  PubMed  Google Scholar 

  66. Perego C, Fumagalli S, De Simoni M-G (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 8:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuric E, Ruscher K (2014) Dynamics of major histocompatibility complex class II-positive cells in the postischemic brain--influence of levodopa treatment. J Neuroinflammation 11:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN et al (1997) Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke 28(6):1233–1244

    Article  CAS  PubMed  Google Scholar 

  69. Lambertsen KL, Meldgaard M, Ladeby R, Finsen B (2005) A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25(1):119–135

    Article  CAS  PubMed  Google Scholar 

  70. Rothwell N, Allan S, Toulmond S (1997) The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest 100(11):2648–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P et al (2008) Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28(46):12039–12051

    Article  PubMed  CAS  Google Scholar 

  72. Green SP, Cairns B, Rae J, Errett-Baroncini C, Hongo JA, Erickson RW et al (2001) Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab 21(4):374–384

    Article  CAS  PubMed  Google Scholar 

  73. del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI et al (2007) Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 38(2 Suppl):646–651

    Article  PubMed  CAS  Google Scholar 

  74. Zhang L, Dong L-Y, Li Y-J, Hong Z, Wei W-S (2012) The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation 9:211

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z et al (2013) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44(6):1706–1713

    Article  CAS  PubMed  Google Scholar 

  76. Fagan SC, Cronic LE, Hess DC (2011) Minocycline development for acute ischemic stroke. Transl Stroke Res 2(2):202–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jolivel V, Bicker F, Binamé F, Ploen R, Keller S, Gollan R et al (2015) Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol 129(2):279–295

    Article  PubMed  Google Scholar 

  78. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG (2006) Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37(4):1087–1093

    Article  PubMed  Google Scholar 

  79. Egashira Y, Suzuki Y, Azuma Y, Takagi T, Mishiro K, Sugitani S et al (2013) The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment. J Neuroinflammation 10:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Jackman K, Kahles T, Lane D, Garcia-Bonilla L, Abe T, Capone C et al (2013) Progranulin deficiency promotes post-ischemic blood–brain barrier disruption. J Neurosci 33(50):19579–19589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kanazawa M, Kawamura K, Takahashi T, Miura M, Tanaka Y, Koyama M et al (2015) Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. Brain 138(Pt 7):1932–1948

    Article  PubMed  Google Scholar 

  82. Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605

    Article  PubMed  CAS  Google Scholar 

  83. Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H et al (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27(3):488–500

    Article  CAS  PubMed  Google Scholar 

  84. Kitamura Y, Takata K, Inden M, Tsuchiya D, Yanagisawa D, Nakata J et al (2004) Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol Sci 94(2):203–206

    Article  CAS  PubMed  Google Scholar 

  85. Neumann J, Sauerzweig S, Rönicke R, Gunzer F, Dinkel K, Ullrich O et al (2008) Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 28(23):5965–5975

    Article  CAS  PubMed  Google Scholar 

  86. O’Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL (2002) IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 39(1):85–97

    Article  PubMed  Google Scholar 

  87. Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 34:1573–1584

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni M-G (2015) The ischemic environment drives microglia and macrophage function. Front Neurol 6(April):81

    PubMed  PubMed Central  Google Scholar 

  89. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Perry VH, Nicoll JAR, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201

    Article  PubMed  Google Scholar 

  91. Schoknecht K, David Y, Heinemann U (2015) The blood–brain barrier-gatekeeper to neuronal homeostasis: clinical implications in the setting of stroke. Semin Cell Dev Biol 38:35–42

    Article  PubMed  Google Scholar 

  92. Engelhardt S, Huang S-F, Patkar S, Gassmann M, Ogunshola OO (2015) Differential responses of blood–brain barrier associated cells to hypoxia and ischemia: a comparative study. Fluids Barriers CNS 12:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chu HXHX, Kim HAHA, Lee S, Moore JPJP, Chan CTCT, Vinh A et al (2014) Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 34(3):450–459

    Article  CAS  PubMed  Google Scholar 

  94. Chamorro Á, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R (2012) The immunology of acute stroke. Nat Rev Neurol 8(7):401–410

    Article  CAS  PubMed  Google Scholar 

  95. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe C-U, Siler DA et al (2008) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857

    Article  Google Scholar 

  96. Mracsko E, Javidi E, Na S-Y, Kahn A, Liesz A, Veltkamp R (2014) Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice. Stroke 45(7):2107–2114

    Article  PubMed  Google Scholar 

  97. del Zoppo GJ (2010) The neurovascular unit, matrix proteases, and innate inflammation. Ann N Y Acad Sci 1207:46–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Rodrigues SF, Granger DN (2014) Leukocyte-mediated tissue injury in ischemic stroke. Curr Med Chem 21(19):2130–2137

    Article  CAS  PubMed  Google Scholar 

  99. Amantea D, Russo R, Gliozzi M, Fratto V, Berliocchi L, Bagetta G et al (2007) Early upregulation of matrix metalloproteinases following reperfusion triggers neuroinflammatory mediators in brain ischemia in rat. Int Rev Neurobiol 82:149–169

    Article  CAS  PubMed  Google Scholar 

  100. Ishikawa M, Zhang JH, Nanda A, Granger DN (2004) Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. Front Biosci 9:1339–1347

    Article  CAS  PubMed  Google Scholar 

  101. Gill D, Veltkamp R (2016) Dynamics of T cell responses after stroke. Curr Opin Pharmacol 26:26–32

    Article  CAS  PubMed  Google Scholar 

  102. Moore DF, Li H, Jeffries N, Wright V, Cooper RA, Elkahloun A et al (2005) Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation 111(2):212–221

    Article  CAS  PubMed  Google Scholar 

  103. Asano S, Chantler PD, Barr T (2016) Gene expression profiling in stroke: relevance of blood-brain interaction. Curr Opin Pharmacol 26:80–86

    Article  CAS  PubMed  Google Scholar 

  104. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ (1994) Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 144(1):188–199

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Clark RK, Lee EV, White RF, Jonak ZL, Feuerstein GZ, Barone FC (1994) Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res Bull 35(4):387–392

    Article  CAS  PubMed  Google Scholar 

  106. Buck BH, Liebeskind DS, Saver JL, Bang OY, Yun SW, Starkman S et al (2008) Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke 39(2):355–360

    Article  PubMed  Google Scholar 

  107. Akopov S, Simonian N, Grigorian G (1996) Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage. Stroke 27:1739–1743

    Article  CAS  PubMed  Google Scholar 

  108. Atochin DN, Fisher D, Demchenko IT, Thom SR (2000) Neutrophil sequestration and the effect of hyperbaric oxygen in a rat model of temporary middle cerebral artery occlusion. Undersea Hyperb Med 27(4):185–190

    CAS  PubMed  Google Scholar 

  109. Connolly ES, Winfree CJ, Springer TA, Naka Y, Liao H, Du Yan S et al (1996) Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 97(1):209–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Matsuo Y, Onodera H, Shiga Y, Nakamura M, Ninomiya M, Kihara T et al (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25(7):1469–1475

    Article  CAS  PubMed  Google Scholar 

  111. Fumagalli S, Perego C, Ortolano F, De Simoni M-G (2013) CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia 61(6):827–842

    Article  PubMed  Google Scholar 

  112. Tang Z, Gan Y, Liu Q, Yin J-X, Liu Q, Shi J et al (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Schilling M, Strecker J-K, Ringelstein EB, Schäbitz W-R, Kiefer R (2009) The role of CC chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice. Brain Res 1289:79–84

    Article  CAS  PubMed  Google Scholar 

  114. Schilling M, Strecker J-K, Schäbitz W-R, Ringelstein EB, Kiefer R (2009) Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 161(3):806–812

    Article  CAS  PubMed  Google Scholar 

  115. Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C (2002) Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 22(3):308–317

    Article  CAS  PubMed  Google Scholar 

  116. Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV (2007) Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 38(4):1345–1353

    Article  CAS  PubMed  Google Scholar 

  117. Gliem M, Mausberg AK, Lee J-I, Simiantonakis I, van Rooijen N, Hartung H-P et al (2012) Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol 71(6):743–752

    Article  CAS  PubMed  Google Scholar 

  118. Chu HX, Broughton BRS, Kim HA, Lee S, Drummond GR, Sobey CG (2015) Evidence that Ly6C(hi) monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke 46(7):1929–1937

    Article  CAS  PubMed  Google Scholar 

  119. Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J (2014) The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci 8:461

    PubMed  Google Scholar 

  120. Beschorner R, Schluesener HJ, Gözalan F, Meyermann R, Schwab JM (2002) Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. J Neuroimmunol 126(1-2):107–115

    Article  CAS  PubMed  Google Scholar 

  121. Mena H, Cadavid D, Rushing EJ (2004) Human cerebral infarct: a proposed histopathologic classification based on 137 cases. Acta Neuropathol 108(6):524–530

    Article  PubMed  Google Scholar 

  122. Klehmet J, Harms H, Richter M, Prass K, Volk HD, Dirnagl U et al (2009) Stroke-induced immunodepression and post-stroke infections: lessons from the preventive antibacterial therapy in stroke trial. Neuroscience 158(3):1184–1193

    Article  CAS  PubMed  Google Scholar 

  123. Chamorro A, Amaro S, Vargas M, Obach V, Cervera A, Torres F et al (2006) Interleukin 10, monocytes and increased risk of early infection in ischaemic stroke. J Neurol Neurosurg Psychiatry 77(11):1279–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Haeusler KG, Schmidt WUH, Föhring F, Meisel C, Helms T, Jungehulsing GJ et al (2008) Cellular immunodepression preceding infectious complications after acute ischemic stroke in humans. Cerebrovasc Dis 25(1-2):50–58

    Article  CAS  PubMed  Google Scholar 

  125. Urra X, Villamor N, Amaro S, Gómez-Choco M, Obach V, Oleaga L et al (2009) Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab 29(5):994–1002

    Article  CAS  PubMed  Google Scholar 

  126. Jin R, Zhu X, Liu L, Nanda A, Granger DN, Li G (2013) Simvastatin attenuates stroke-induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice. Stroke 44(4):1135–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ajmo CT, Vernon DOL, Collier L, Hall AA, Garbuzova-Davis S, Willing A et al (2008) The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 86(10):2227–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liesz A, Hagmann S, Zschoche C, Adamek J, Zhou W, Sun L et al (2009) The spectrum of systemic immune alterations after murine focal ischemia: immunodepression versus immunomodulation. Stroke 40(8):2849–2858

    Article  CAS  PubMed  Google Scholar 

  129. Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A et al (2006) Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 176(11):6523–6531

    Article  CAS  PubMed  Google Scholar 

  130. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR (2012) A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol 7(4):1017–1024

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kim E, Yang J, Beltran CD, Cho S (2014) Role of spleen-derived monocytes/macrophages in acute ischemic brain injury. J Cereb Blood Flow Metab 34(8):1411–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bao Y, Kim E, Bhosle S, Mehta H, Cho S (2010) A role for spleen monocytes in post-ischemic brain inflammation and injury. J Neuroinflammation 7:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Enzmann G, Mysiorek C, Gorina R, Cheng Y-J, Ghavampour S, Hannocks M-J et al (2013) The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol 125(3):395–412

    Article  PubMed  Google Scholar 

  134. Justicia C, Panés J, Solé S, Cervera A, Deulofeu R, Chamorro A et al (2003) Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab 23(12):1430–1440

    Article  CAS  PubMed  Google Scholar 

  135. Gidday JM, Gasche YG, Copin J-C, Shah AR, Perez RS, Shapiro SD et al (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood–brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289(2):H558–H568

    Article  CAS  PubMed  Google Scholar 

  136. Bao Dang Q, Lapergue B, Tran-Dinh A, Diallo D, Moreno J-A, Mazighi M et al (2013) High-density lipoproteins limit neutrophil-induced damage to the blood–brain barrier in vitro. J Cereb Blood Flow Metab 33(4):575–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Granger DN, Benoit JN, Suzuki M, Grisham MB (1989) Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am J Physiol 257(5 Pt 1):G683–G688

    CAS  PubMed  Google Scholar 

  138. Mori E, del Zoppo GJ, Chambers JD, Copeland BR, Arfors KE (1992) Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23(5):712–718

    Article  CAS  PubMed  Google Scholar 

  139. Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I et al (2014) Neutrophils scan for activated platelets to initiate inflammation. Science 346(6214):1234–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585(23):3798–3805

    Article  CAS  PubMed  Google Scholar 

  141. London A, Cohen M, Schwartz M (2013) Microglia and monocyte-derived macrophages : functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 7(34):1–10

    Google Scholar 

  142. Thiel A, Heiss WD (2011) Imaging of microglia activation in stroke. Stroke 42:507–512

    Article  PubMed  Google Scholar 

  143. Schilling M, Besselmann M, Müller M, Strecker JK, Ringelstein EB, Kiefer R (2005) Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 196(2):290–297

    Article  CAS  PubMed  Google Scholar 

  144. Ritzel RM, Patel AR, Grenier JM, Crapser J, Verma R, Jellison ER et al (2015) Functional differences between microglia and monocytes after ischemic stroke. J Neuroinflammation 12:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kleinschnitz C, Bendszus M, Frank M, Solymosi L, Toyka KV, Stoll G (2003) In vivo monitoring of macrophage infiltration in experimental ischemic brain lesions by magnetic resonance imaging. J Cereb Blood Flow Metab 23(11):1356–1361

    Article  CAS  PubMed  Google Scholar 

  146. Rausch M, Sauter A, Fröhlich J, Neubacher U, Radü EW, Rudin M (2001) Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med 46(5):1018–1022

    Article  CAS  PubMed  Google Scholar 

  147. Stubbe T, Ebner F, Richter D, Engel O, Klehmet J, Royl G et al (2013) Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab 33:37–47

    Article  CAS  PubMed  Google Scholar 

  148. Sedgwick JD, Ford AL, Foulcher E, Airriess R (1998) Central nervous system microglial cell activation and proliferation follows direct interaction with tissue-infiltrating T cell blasts. J Immunol 160:5320–5330

    CAS  PubMed  Google Scholar 

  149. Campanella M, Sciorati C, Tarozzo G, Beltramo M (2002) Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke 33:586–592

    Article  PubMed  Google Scholar 

  150. Gliem M, Schwaninger M, Jander S (2016) Protective features of peripheral monocytes/macrophages in stroke. Biochim Biophys Acta 1862(3):329–338

    Article  CAS  PubMed  Google Scholar 

  151. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121(22):2437–2445

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chu HX, Kim HA, Lee S, Broughton BRS, Drummond GR, Sobey CG (2016) Evidence of CCR2-independent transmigration of Ly6C(hi) monocytes into the brain after permanent cerebral ischemia in mice. Brain Res 1637:118–127

    Article  CAS  PubMed  Google Scholar 

  153. Miró-Mur F, Pérez-de-Puig I, Ferrer-Ferrer M, Urra X, Justicia C, Chamorro A et al (2016) Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav Immun 53:18–33

    Article  PubMed  CAS  Google Scholar 

  154. Michaud J-P, Pimentel-Coelho PM, Tremblay Y, Rivest S (2014) The impact of Ly6Clow monocytes after cerebral hypoxia-ischemia in adult mice. J Cereb Blood Flow Metab 34(7):e1–e9

    Article  PubMed  CAS  Google Scholar 

  155. Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44(3):439–449

    Article  CAS  PubMed  Google Scholar 

  156. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838):666–670

    Article  CAS  PubMed  Google Scholar 

  157. Thomas G, Tacke R, Hedrick CC, Hanna RN (2015) Nonclassical patrolling monocyte function in the vasculature. Arterioscler Thromb Vasc Biol 35(6):1306–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N et al (2013) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 23:34–44

    Article  CAS  PubMed  Google Scholar 

  159. Neher JJ, Emmrich JV, Fricker M, Mander PK, Théry C, Brown GC (2013) Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc Natl Acad Sci U S A 110(43):E4098–E4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jander S, Schroeter M, Saleh A (2007) Imaging inflammation in acute brain ischemia. Stroke 38(2 Suppl):642–645

    Article  PubMed  Google Scholar 

  161. Frieler RA, Meng H, Duan SZ, Berger S, Schütz G, He Y, Xi G, Wang MM, Mortensen RM (2011) Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct volume and alters inflammation during cerebral ischemia. Stroke 42(1):179–185

    Article  PubMed  Google Scholar 

  162. Xu Y, Qian L, Zong G, Ma K, Zhu X, Zhang H et al (2012) Class A scavenger receptor promotes cerebral ischemic injury by pivoting microglia/macrophage polarization. Neuroscience 218:35–48

    Article  CAS  PubMed  Google Scholar 

  163. Ballesteros I, Cuartero MI, de la Parra J, Perez-Ruiz A, Hurtado O, Lizasoain I et al (2014) Polarization of macrophages/microglia toward an M2 phenotype as a therapeutic strategy for stroke treatment. In: Micieli G, Amantea D (eds) Rational basis for clinical translation in stroke therapy. CRC, Boca Raton, pp 381–392

    Google Scholar 

  164. Amantea D (2016) Polarizing the immune system towards neuroprotection in brain ischemia. Neural Regen Res 11(1):81–82

    Article  PubMed  PubMed Central  Google Scholar 

  165. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185

    Article  CAS  PubMed  Google Scholar 

  166. Schultze JL (2016) Reprogramming of macrophages—new opportunities for therapeutic targeting. Curr Opin Pharmacol 26:10–15

    Article  CAS  PubMed  Google Scholar 

  167. Colin S, Chinetti-Gbaguidi G, Staels B (2014) Macrophage phenotypes in atherosclerosis. Immunol Rev 262(1):153–166

    Article  CAS  PubMed  Google Scholar 

  168. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P et al (2015) Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol 11(1):56–64

    Article  PubMed  Google Scholar 

  170. Amantea D, Certo M, Petrelli F, Tassorelli C, Micieli G, Corasaniti MT et al (2016) Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype. Exp Neurol 275:116–125

    Article  CAS  PubMed  Google Scholar 

  171. Suenaga J, Hu X, Pu H, Shi Y, Hassan SH, Xu M et al (2015) White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp Neurol 272:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Han Z, Li L, Wang L, Degos V, Maze M, Su H (2014) Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture. J Neurochem 131(4):498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Han Z, Shen F, He Y, Degos V, Camus M, Maze M et al (2014) Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress. PLoS One 9(8), e105711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Rahman M, Muhammad S, Khan MA, Chen H, Ridder DA, Müller-Fielitz H et al (2014) The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat Commun 5:3944

    Article  CAS  PubMed  Google Scholar 

  175. Pérez-de Puig I, Miró F, Salas-Perdomo A, Bonfill-Teixidor E, Ferrer-Ferrer M, Márquez-Kisinousky L et al (2013) IL-10 deficiency exacerbates the brain inflammatory response to permanent ischemia without preventing resolution of the lesion. J Cereb Blood Flow Metab 33(12):1955–1966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG (2011) Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42(7):2026–2032

    Article  PubMed  PubMed Central  Google Scholar 

  177. Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M et al (2016) Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke 47(2):498–504

    Article  CAS  PubMed  Google Scholar 

  178. Ballesteros I, Cuartero MI, Pradillo JM, de la Parra J, Pérez-Ruiz A, Corbí A et al (2014) Rosiglitazone-induced CD36 up-regulation resolves inflammation by PPARγ and 5-LO-dependent pathways. J Leukoc Biol 95(4):587–598

    Article  PubMed  CAS  Google Scholar 

  179. Amantea D, Bagetta G (2016) Drug repurposing for immune modulation in acute ischemic stroke. Curr Opin Pharmacol 124–130

    Google Scholar 

  180. Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y (2015) Attenuation of acute stroke injury in rat brain by minocycline promotes blood–brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation 12:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Liao TV, Forehand CC, Hess DC, Fagan SC (2013) Minocycline repurposing in critical illness: focus on stroke. Curr Top Med Chem 13(18):2283–2290

    Article  CAS  PubMed  Google Scholar 

  182. Han L, Cai W, Mao L, Liu J, Li P, Leak RK et al (2015) Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia. Stroke 46(9):2628–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gliem M, Klotz L, van Rooijen N, Hartung H-P, Jander S (2015) Hyperglycemia and PPARγ antagonistically influence macrophage polarization and infarct healing after ischemic stroke. Stroke 46(10):2935–2942

    Article  CAS  PubMed  Google Scholar 

  184. Kernan WN, Viscoli CM, Furie KL, Young LH, Inzucchi SE, Gorman M et al (2016) Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med 374(14):1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Certo M, Endo Y, Ohta K, Sakurada S, Bagetta G, Amantea D (2015) Activation of RXR/PPARγ underlies neuroprotection by bexarotene in ischemic stroke. Pharmacol Res 102:298–307

    Article  CAS  PubMed  Google Scholar 

  186. Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA et al (2013) N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke 44(12):3498–3508

    Article  CAS  PubMed  Google Scholar 

  187. Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S et al (2014) Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 40:131–142

    Article  CAS  PubMed  Google Scholar 

  188. Darsalia V, Hua S, Larsson M, Mallard C, Nathanson D, Nyström T et al (2014) Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization. PLoS One 9(8), e103114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Brifault C, Gras M, Liot D, May V, Vaudry D, Wurtz O (2015) Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization. Stroke 46(2):520–528

    Article  CAS  PubMed  Google Scholar 

  190. Womble TA, Green S, Shahaduzzaman M, Grieco J, Sanberg PR, Pennypacker KR et al (2014) Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Mol Cell Neurosci 59:76–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Desestret V, Riou A, Chauveau F, Cho T-H, Devillard E, Marinescu M et al (2013) In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages. PLoS One 8(6), e67063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yang B, Parsha K, Schaar K, Xi X, Aronowski J, Savitz SI (2016) Various cell populations within the mononuclear fraction of bone marrow contribute to the beneficial effects of autologous bone marrow cell therapy in a rodent stroke model. Transl Stroke Res 7(4):322–330

    Article  CAS  PubMed  Google Scholar 

  193. Chernykh ER, Shevela EY, Starostina NM, Morozov SA, Davydova MN, Menyaeva EV et al (2016) Safety and therapeutic potential of M2-macrophages in stroke treatment. Cell Transplant 25(8):1461–1471

    Article  PubMed  Google Scholar 

  194. Cardoso AL, Guedes JR, de Lima MCP (2016) Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions. Curr Opin Pharmacol 26:1–9

    Article  CAS  PubMed  Google Scholar 

  195. Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D (2014) mRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One 9(6):e99283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X et al (2015) MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 49:75–85

    Article  CAS  PubMed  Google Scholar 

  197. Yang Z, Zhong L, Zhong S, Xian R, Yuan B (2015) miR-203 protects microglia mediated brain injury by regulating inflammatory responses via feedback to MyD88 in ischemia. Mol Immunol 65(2):293–301

    Article  CAS  PubMed  Google Scholar 

  198. Cardoso AL, Guedes JR, Pereira de Almeida L, Pedroso de Lima MC (2012) miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 135(1):73–88

    Google Scholar 

  199. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 106(17):7113–7118

    Article  PubMed  PubMed Central  Google Scholar 

  200. Guedes J, Cardoso ALC, Pedroso de Lima MC (2013) Involvement of microRNA in microglia-mediated immune response. Clin Dev Immunol 2013:186872

    Google Scholar 

  201. Su W, Hopkins S, Nesser NK, Sopher B, Silvestroni A, Ammanuel S et al (2014) The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J Immunol 192(1):358–366

    Article  CAS  PubMed  Google Scholar 

  202. Liu D-Z, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30(1):92–101

    Article  PubMed  CAS  Google Scholar 

  203. Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C (2015) Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol Med 21:197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Smith AM, Dragunow M (2014) The human side of microglia. Trends Neurosci 37(3):125–135

    Article  CAS  PubMed  Google Scholar 

  205. Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot M-C et al (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60(5):717–727

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Amantea Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amantea, D., Greco, R., Tassorelli, C., Bagetta, G. (2017). Polarization of Microglia/Macrophages in Brain Ischaemia: Relevance for Stroke Therapy. In: Lapchak, P., Zhang, J. (eds) Neuroprotective Therapy for Stroke and Ischemic Disease. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45345-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45345-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45344-6

  • Online ISBN: 978-3-319-45345-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics