Skip to main content

Abstract

Glucose is the preferred carbon and energy source for E. coli, as well as for many other organisms. Although this bacterium can also feed on other sugars, it only does so when glucose is absent. A typical population of E. coli doubles its size approximately every hour in presence of a pure sugar like glucose or lactose. The existence of the lactose operon was conjectured by Jacob and Monod after observing that a population of E. coli is initially unable to digest lactose when fed with a mixture of glucose and lactose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadon ST (2006) The murky origin of Snow White and her T-even dwarfs. Genetics 155:481–486

    Google Scholar 

  • Abramson J, Iwata S, Kaback HR (2004) Lactose permease as a paradigm for membrane transport proteins (review). Mol Membr Biol 21:227–236

    Article  CAS  PubMed  Google Scholar 

  • Ackers GK, Johnson AD, Sea MA (1982) Quantitative model for gene regulation by λ phage repressor. Proc Natl Acad Sci USA 79:1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DF, Kurtz TG (2011) Continuous time Markov chain models for chemical reaction networks. In: Design and analysis of biomolecular circuits. Springer, Berlin, pp 3–42

    Chapter  Google Scholar 

  • Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 101(7):1822–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149:1633–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artyomov MN, Das J, Kardar M, Chakraborty AK (2007) Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities. Proc Natl Acad Sci USA 104(48):18958–18963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurell E, Sneppen K (2002) Epigenetics as a first exit problem. Phys Rev Lett 88:048101

    Article  CAS  PubMed  Google Scholar 

  • Aurell E, Brown S, Johanson J, Sneppen K (2002) Stability puzzles in phage λ. Phys Rev E 65:051914

    Article  CAS  Google Scholar 

  • Babloyantz A, Sanglier M (1972) Chemical instabilities of “all-or-none” type in beta - galactosidase induction and active transport. FEBS Lett 23:364–366

    Article  CAS  PubMed  Google Scholar 

  • Beckwith J (1987) The lactose operon. In: Neidhart F, Ingraham J, Low K, Magasanik B, Umbarger H (eds) Escherichia coli and Salmonella thyphymurium: cellular and molecular biology, vol 2. American Society for Microbiology, Washington, DC, pp 1439–1443

    Google Scholar 

  • Berg OG (1978) A model for the statistical fluctuations of protein numbers in a microbial population. J Theor Biol 71(4):587–603

    Article  CAS  PubMed  Google Scholar 

  • Bett G, Zhou Q, Rasmusson R (2011) Models of HERG gating. Biophys J 101(3):631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop LM, Qian H (2010) Stochastic bistability and bifurcation in a mesoscopic signaling system with autocatalytic kinase. Biophys J 98(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blake W, Kaern M, Cantor C, Collins J (2003) Noise in eukaryotic gene expression. Nature 422:633–637

    Article  CAS  PubMed  Google Scholar 

  • Bliss RD, Painter PR, Marr AG (1982) Role of feedback inhibition in stabilizing the classical operon. J Theor Biol 97:177–193

    Article  CAS  PubMed  Google Scholar 

  • Bobrowski A, Lipniacki T, Pichór K, Rudnicki R (2007) Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression. J Math Anal Appl 333(2):753–769

    Article  Google Scholar 

  • Bokes P, King JR, Wood AT, Loose M (2013) Transcriptional bursting diversifies the behaviour of a toggle switch: hybrid simulation of stochastic gene expression. Bull Math Biol 75(2):351–371

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Friedman N, Xie X (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Lu HM, Liang J (2010) Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda. Proc Natl Acad Sci USA 107(43):18445–18450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caravagna G, Mauri G, d’Onofrio A (2013) The interplay of intrinsic and extrinsic bounded noises in biomolecular networks. PLoS ONE 8(2):e51174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry J, Adler F (2000) How to make a biological switch. J Theor Biol 203:117–133

    Article  CAS  PubMed  Google Scholar 

  • Chubb J, Trcek T, Shenoy S, Singer R (2006) Transcriptional pulsing of a developmental gene. Curr Biol 16:1018–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn M, Horibata K (1959) Analysis of the differentiation and of the heterogeneity within a population of Escherichia coli undergoing induced beta-galactosidase synthesis. J Bacteriol 78:613–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell D, Swain P, Tupper P (2012) Stochastic branching-diffusion models for gene expression. Proc Natl Acad Sci USA 109(25):9699–9704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delbrück M (1979) Interview with Max Delbrück. http://resolver.caltech.edu/CaltechOH:OH_Delbruck_M

  • Díaz-Hernández O, Santillán M (2010) Bistable behavior of the lac operon in E. coli when induced with a mixture of lactose and TMG. Front Physiol 1:22

    Google Scholar 

  • Duckworth DH (1976) Who discovered bacteriophage. Bacteriol Rev 40(4):793–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Earnest T, Roberts E, Assaf M, Dahmen K, Luthey-Schulten Z (2013) DNA looping increases the range of bistability in a stochastic model of the lac genetic switch. Phys Biol 10(2):026002

    Article  CAS  PubMed  Google Scholar 

  • Elgart V, Jia T, Kulkarni R (2010) Applications of Little’s law to stochastic models of gene expression. Phys Rev E 87(2 Pt 1):021901

    Article  CAS  Google Scholar 

  • Elowitz M, Levine A, Siggia E, Swain P (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Hensel Z, Xiao J, Wang J (2012) Analytical calculation of protein production distributions in models of clustered protein expression. Phys Rev E 85(3 Pt 1):155–160

    Google Scholar 

  • Ferguson M, Le Coq D, Jules M, Aymerich S, Radulescu O, Declerck N, Royer C (2012) Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states. Proc Natl Acad Sci USA 109(1):155–160

    Article  CAS  PubMed  Google Scholar 

  • Ferrell JE (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–148

    Article  CAS  PubMed  Google Scholar 

  • Friedman N, Cai L, Xie X (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97:168302–1/4

    Article  CAS  PubMed  Google Scholar 

  • Gardiner C (1983) Handbook of stochastic methods. Springer, Berlin

    Book  Google Scholar 

  • Gardner T, Cantor C, Collins J (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  • Gedeon T, Mischaikow K, Patterson K, Traldi E (2008) Binding cooperativity in phage λ is not sufficient to produce an effective switch. Biophy J 94(9):3384–3392

    Article  CAS  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403–434

    Article  CAS  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  CAS  Google Scholar 

  • Gillespie DT (1992) A rigorous derivation of the chemical master equation. Physica A 188(1–3):404–425

    Article  CAS  Google Scholar 

  • Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113(1):297–306

    Article  CAS  Google Scholar 

  • Giona M, Adrover A (2002) Modified model for the regulation of the tryptophan operon in Escherichia coli. Biotechnol Bioeng 80:297–304

    Article  CAS  PubMed  Google Scholar 

  • Golding I, Paulsson J, Zawilski S, Cox E (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Goodwin BC (1963) Temporal organization in cells. Academic, London

    Google Scholar 

  • Goodwin BC (1965) Oscillatory behaviour in enzymatic control process. Adv Enzyme Regul 3:425–438

    Article  CAS  PubMed  Google Scholar 

  • Griffith J (1968a) Mathematics of cellular control processes. I. Negative feedback to one gene. J Theor Biol 20:202–208

    Article  CAS  PubMed  Google Scholar 

  • Griffith J (1968b) Mathematics of cellular control processes. II. Positive feedback to one gene. J Theor Biol 20:209–216

    CAS  PubMed  Google Scholar 

  • Grigorov L, Polyakova M, Chernavskil D (1967) Model investigation of trigger schemes and the differentiation process (in Russian). Molekulyarnaya Biologiya 1(3):410–418

    CAS  Google Scholar 

  • Groetsch CW, King JT (1988) Matrix methods and applications. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Haken H (1983) Synergetics: an introduction, 3rd edn. Springer series in synergetics, vol 1. Springer, Berlin

    Google Scholar 

  • Hasty J, Isaacs F, Dolnik M, McMillen D, Collins JJ (2001) Designer gene networks: towards fundamental cellular control. Chaos 11(1):207–220

    Article  CAS  PubMed  Google Scholar 

  • Heinrich R, Rapoport TA (1980) Mathematical modeling of translation of mRNA in eucaryotes: Steady states, time-dependent processes and application to reticulocytes. J Theor Biol 86:279–313

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Valdez A, Santillán M (2010) Cyclic expression and cooperative operator interaction in the trp operon of Escherichia coli. J Theor Biol 263:340–352

    Article  CAS  PubMed  Google Scholar 

  • Higham DJ (2008) Modeling and simulating chemical reactions. SIAM Rev 50(2):347–368

    Article  Google Scholar 

  • Huang L, Yuan Z, Liu P, Zhou T (2015) Effects of promoter leakage on dynamics of gene expression. BMC Syst Biol 9:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Iyer-Biswas S, Hayot F, Jayaprakash C (2009) Stochasticity of gene products from transcriptional pulsing. Phys Rev E 79(3 Pt 1):031911

    Article  CAS  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Perrin D, Sanchez C, Monod J (1960) Operon: a group of genes with the expression coordinated by an operator. C R Hebd Seances Acad Sci 250:1727–1729

    CAS  PubMed  Google Scholar 

  • Jia T, Kulkarni R (2011) Intrinsic noise in stochastic models of gene expression with molecular memory and bursting. Phys Rev Lett 106(5):058102

    Article  CAS  PubMed  Google Scholar 

  • Kaback HR (2005) Structure and mechanism of the lactose permease. C R Biol 328:557–567

    Article  CAS  PubMed  Google Scholar 

  • Kaern M, Elston T, Blake W, Collins J (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–464

    Article  CAS  PubMed  Google Scholar 

  • Kepler T, Elston T (2001) Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations. Biophy J 81:3116–3136

    Article  CAS  Google Scholar 

  • Kuhlman T, Zhang Z, Saier MH, Hwa T (2007) Combinatorial transcriptional control of the lactose operon of Escherichia coli. Proc Natl Acad Sci USA 104:6043–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwahara H, Schwartz R (2012) Stochastic steady state gain in a gene expression process with mRNA degradation control. J R Soc Interface 9(72):1589–1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei J (2010) Stochasticity in single gene expression with both intrinsic noise and fluctuation in kinetic parameters. J Theor Biol 256(4):485–492 [Erratum appears in J Theor Biol 2010 Jan 21; 262(2):381]

    Google Scholar 

  • Lendenmann U, Snozzi M, Egli T (1996) Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture. Appl Environ Microbiol 62:1493–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis M (2005) The lac repressor. C R Biol 328:521–548

    Article  CAS  PubMed  Google Scholar 

  • Lipniacki T, Paszek P, Marciniak-Czochra A, Brasier A, Kimmel M (2006) Transcriptional stochasticity in gene expression. J Theor Biol 238(2):348–367

    Article  CAS  PubMed  Google Scholar 

  • Little JW, Shepley DP, Wert DW (1999) Robustness of a gene regulatory circuit. EMBO J 18:4299–42307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lwoff A (1953) Lysogeny. Bacteriol Rev 17:269–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackey MC, Tyran-Kamińska M (2008) Dynamics and density evolution in piecewise deterministic growth processes. Ann Polon Math 94:111–129

    Article  Google Scholar 

  • Mackey MC, Tyran-Kamińska M (2016) The limiting dynamics of a bistable molecular switch with and without noise. J Math Biol 73:367–395

    Article  PubMed  Google Scholar 

  • Mackey MC, Tyran-Kamińska M, Yvinec R (2011) Molecular distributions in gene regulatory dynamics. J Theor Biol 274:84–96

    Article  CAS  PubMed  Google Scholar 

  • Mackey MC, Tyran-Kamińska M, Yvinec R (2013) Dynamic behavior of stochastic gene expression models in the presence of bursting. SIAM J Appl Math 73(5):1830–1852

    Article  Google Scholar 

  • Mackey MC, Santillan M, Tyran-Kamińska M, Zeron ES (2015) The utility of simple mathematical models in understanding gene regulatory dynamics. In Silico Biol 12(1–2):23–53

    Article  CAS  Google Scholar 

  • Mier-y-Teran-Romero L, Silber M, Hatzimanikatis V (2010) The origins of time-delay in template biopolymerization processes. PLOS Comp Biol 6:e1000726–1–15

    Google Scholar 

  • Monod J (1941) Recherches sur la croissance des cultures bactériennes. Ph.D. thesis, Université de Paris, Paris

    Google Scholar 

  • Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Article  CAS  PubMed  Google Scholar 

  • Morelli L, Julicher F (2007) Precision of genetic oscillators and clocks. Phys Rev Lett 98(22):228101

    Article  CAS  PubMed  Google Scholar 

  • Morelli MJ, Allen RJ, Tanase-Nicola S, ten Wolde PR (2008a) Eliminating fast reactions in stochastic simulations of biochemical networks: a bistable genetic switch. J Chem Phys 128(4):045105

    Article  CAS  PubMed  Google Scholar 

  • Morelli MJ, Tanase-Nicola S, Allen RJ, ten Wolde PR (2008b) Reaction coordinates for the flipping of genetic switches. Biophys J 94(9):3413–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mugler A, Walczak A, Wiggins C (2009) Spectral solutions to stochastic models of gene expression with bursts and regulation. Phys Rev E 80(4 Pt 1):041921

    Article  CAS  Google Scholar 

  • Müller-Hill B (1998) The function of auxiliaty operators. Mol Microbiol 29:13–18

    Article  PubMed  Google Scholar 

  • Narang A (2007) Effect of DNA looping on the induction kinetics of the lac operon. J Theor Biol 247:695–712

    Article  CAS  PubMed  Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations. Wiley, New York

    Google Scholar 

  • Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA 43(7):553–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochab-Marcinek A, Tabaka M (2015) Transcriptional leakage versus noise: a simple mechanism of conversion between binary and graded response in autoregulated genes. Phys Rev E Stat Nonlin Soft Matter Phys 91(1):012704

    Article  CAS  PubMed  Google Scholar 

  • Oehler S, Eismann ER, Krämer H, Müller-Hill B (1990) The three operators of lac operon cooperate in repression. EMBO J 9:973–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oppenheim I, Schuler K, Weiss G (1969) Stochastic and deterministic formulation of chemical rate equations. J Chem Phys 50:460–466

    Article  CAS  Google Scholar 

  • Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S (2005) Switches in bacteriophage lambda development. Annu Rev Genet 39(1):409–429

    Article  CAS  PubMed  Google Scholar 

  • Othmer H (1976) The qualitative dynamics of a class of biochemical control circuits. J Math Biol 3:53–78

    Article  CAS  PubMed  Google Scholar 

  • Ozbudak E, Thattai M, Lim H, Shraiman B, van Oudenaarden A (2004) Multistability in the lactose utilization network of Escherichia coli. Nature 427:737–740

    Article  CAS  PubMed  Google Scholar 

  • Penazzio S (2006) The origin of phage virology. Riv Biol 99(1):103–129

    Google Scholar 

  • Pichór K, Rudnicki R (2000) Continuous Markov semigroups and stability of transport equations. J Math Anal Appl 249:668–685

    Article  Google Scholar 

  • Ptashne M (1986) A genetic switch: gene control and Phage Lambda. Cell Press, Cambridge, MA

    Google Scholar 

  • Qian H, Shi PZ, Xing J (2009) Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity. Phys Chem Chem Phys 11(24):4861–4870

    Article  CAS  PubMed  Google Scholar 

  • Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj A, Peskin C, Tranchina D, Vargas D, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:1707–1719

    Article  CAS  Google Scholar 

  • Rajala T, Hakkinen A, Healy S, Yli-Harja O, Ribeiro A (2010) Effects of transcriptional pausing on gene expression dynamics. PLoS Comput Biol 6(3):e1000704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinitz J, Vaisnys JR (1990) Theoretical and experimental analysis of the phage lambda genetic switch implies missing levels of co-operativity. J Theor Biol 145:295–318

    Article  CAS  PubMed  Google Scholar 

  • Reznikoff WS (1992) The lactose operon-controlling elements: a complex paradigm. Mol Microbiol 6:2419–2422

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro A, Smolander O, Rajala T, Hakkinen A, Yli-Harja O (2009) Delayed stochastic model of transcription at the single nucleotide level. J Comput Biol 16(4):539–553

    Article  CAS  PubMed  Google Scholar 

  • Robinson R (2013) Bursting with randomness: A simple model for stochastic control of gene expression. PLoS Biol 11(8):e1001622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozanov DV, D’Ari R, Sineoky SP (1998) RecA-independent pathways of lambdoid prophage induction in Escherichia coli. J Bacteriol 180:6306–6315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan S, Wei J (2001) On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J Math Appl Med Biol 18:41–52

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Cavazos E, Santillán M (2013) Optimal performance of the tryptophan operon of E. coli: A stochastic, dynamical, mathematical-modeling approach. Bull Math Biol 76:314–334

    Article  PubMed  Google Scholar 

  • Samoilov M, Plyasunov S, Arkin AP (2005) Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc Natl Acad Sci USA 102(7):2310–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santillán M (2008) Bistable behavior in a model of the lac operon in Escherichia coli with variable growth rate. Biophys J 94:2065–2081

    Article  CAS  PubMed  Google Scholar 

  • Santillán M (2008) On the use of the Hill functions in mathematical models of gene regulatory networks. Math Model Nat Phenom 3(2):85–97

    Article  Google Scholar 

  • Santillán M (2014) Chemical kinetics, stochastic processes, and irreversible thermodynamics. Springer, Heidelberg

    Book  Google Scholar 

  • Santillán M, Mackey MC (2001) Dynamic regulation of the tryptophan operon: Modeling study and comparison with experimental data. Proc Natl Acad Sci USA 98:1364–1369

    Article  PubMed  PubMed Central  Google Scholar 

  • Santillán M, Mackey M (2004a) Why the lysogenic state of phage λ is so stable: a mathematical modeling approach. Biophys J 86:75–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Santillán M, Mackey MC (2004b) Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon. Biophys J 86:1282–1292

    Article  PubMed  PubMed Central  Google Scholar 

  • Santillán M, Mackey MC (2005) Dynamic behaviour of the B12 riboswitch. Phys Biol 2(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Santillán M, Mackey MC (2008) Quantitative approaches to the study of bistability in the lac operon of Escherichia coli. J R Soc Interface 5:S29–S39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santillán M, Zeron ES (2004) Dynamic influence of feedback enzyme inhibition and transcription attenuation on the tryptophan operon response to nutritional shifts. J Theor Biol 231(2):287–298

    Article  CAS  PubMed  Google Scholar 

  • Santillán M, Zeron ES (2006) Analytical study of the multiplicity of regulatory mechanisms in the tryptophan operon. Bull Math Biol 68:343–359

    Article  PubMed  Google Scholar 

  • Santillán M, Mackey MC, Zeron ES (2007) Origin of bistability in the lac operon. Biophys J 92:3830–3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selgrade J (1979) Mathematical analysis of a cellular control process with positive feedback. SIAM J Appl Math 36:219–229

    Article  Google Scholar 

  • Sen AK, Liu WM (1990) Dynamic analysis of genetic control and regulation of amino acid synthesis: the tryptophan operon in Escherichia coli. Biotechnol Bioeng 35:185–194

    Article  CAS  PubMed  Google Scholar 

  • Serebriiskii IG, Golemis EA (2000) Uses of lacZ to study gene function: Evaluation of β-galactosidase assays employed in the yeast two-hybrid system. Anal Biochem 285:1–15

    Article  CAS  PubMed  Google Scholar 

  • Shahrezaei V, Swain P (2008a) Analytic distributions for stochastic gene expression. Proc Natl Acad Sci USA 105:17256–17261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahrezaei V, Swain P (2008b) The stochastic nature of biochemical networks. Curr Opin Biotechnol 19:369–374

    Article  CAS  PubMed  Google Scholar 

  • Shea MA, Ackers GK (1985) The OR control system of bacteriophage lambda: A physical-chemical model for gene regulation. J Mol Biol 181:211–230

    Article  CAS  PubMed  Google Scholar 

  • Shenker JQ, Lin MM (2015) Cooperativity leads to temporally-correlated fluctuations in the bacteriophage lambda genetic switch. Front Plant Sci 6:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigal A, Milo R, Cohen A, Geva-Zatorsky N, Klein Y, Liron Y, Rosenfeld N, Danon T, Perzov N, Alon U (2006) Variability and memory of protein levels in human cells. Nature 444:643–646

    Article  CAS  PubMed  Google Scholar 

  • Simpson ML, Cox CD, Allen MS, McCollum JM, Dar RD, Karig DK, F CJ (2009) Noise in biological circuits. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):214–225

    Google Scholar 

  • Singh A, Bokes P (2012) Consequences of mRNA transport on stochastic variability in protein levels. Biophys J 103(5):1087–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha S (1988) Complex behaviour of the repressible operon. J Theor Biol 132:307–318

    Article  CAS  PubMed  Google Scholar 

  • Smith H (1995) Monotone dynamical systems. Mathematical surveys and monographs, vol 41. American Mathematical Society, Providence, RI

    Google Scholar 

  • Strasser M, Theis FJ, Marr C (2012) Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression. Biophys J 102(1):19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratonovich RL (1963) Topics in the theory of random noise. Vol. I: general theory of random processes. Nonlinear transformations of signals and noise. Revised English edition. Translated from the Russian by Richard A. Silverman, Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Summers WS (2011) In the beginning…Bacteriophage 1(1):50–51

    Google Scholar 

  • Suter D, Molina N, Gatfield D, Schneider K, Schibler U, Naef F (2011) Mammalian genes are transcribed with widely different bursting kinetics. Science 332(6028):472–474

    Article  CAS  PubMed  Google Scholar 

  • Tang M (2010) The mean frequency of transcriptional bursting and its variation in single cells. J Math Biol 60(1):27–58

    Article  PubMed  Google Scholar 

  • Tian T (2013) Chemical memory reactions induced bursting dynamics in gene expression. PLoS ONE 8(1):e52029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titular U (1978) A systematic solution procedure for the Fokker-Planck equation of a Brownian particle in the high-friction case. Physica A 91A:321–344

    Article  Google Scholar 

  • Tyson J, Othmer H (1978) The dynamics of feedback control circuits in biochemical pathways. In: Rosen R (ed) Progress in biophysics, vol 5. Academic, New York, pp 1–62

    Google Scholar 

  • Tyson JJ (1975) On the existence of oscillatory solutions in negative feedback cellular control processes. J Theor Biol 1:311–315

    Google Scholar 

  • Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • van Kampen N (1992) Stochastic processes in physics and chemistry, 2nd edn. Elesvier-North Holland, Amsterdam

    Google Scholar 

  • Vellela M, Qian H (2009) Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J R Soc Interface 6(39):925–940

    Article  CAS  PubMed  Google Scholar 

  • Waldherr S, Wu J, Allgower F (2010) Bridging time scales in cellular decision making with a stochastic bistable switch. BMC Syst Biol 4:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang J, Yuan Z, Zhou T (2007) Noise-induced switches in network systems of the genetic toggle switch. BMC Syst Biol 1:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilemski G (1976) On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion. J Stat Phys 14:153–169

    Article  Google Scholar 

  • Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS (2007) The lactose repressor system, paradigms for regulation, allosteric behavior and protein folding. Cell Mol Life Sci 64:3–16

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky C, Horn V (1994) Role of regulatory features of the trp operon of Escherichia coli in mediating a response to a nutritional shift. J Bacteriol 176:6245–6254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim N, Mackey MC (2003) Feedback regulation in the lactose operon: A mathematical modeling study and comparison with experimental data. Biophys J 84:2841–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim N, Santillán M, Horike D, Mackey MC (2004) Dynamics and bistability in a reduced model of the lac operon. Chaos 14:279–292

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Xiao J, Ren X, Lao K, Xie X (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Yvinec R, Zhuge C, Lei J, Mackey MC (2014) Adiabatic reduction of a model of stochastic gene expression with jump Markov process. J Math Biol 68(5):1051–1070

    Article  PubMed  Google Scholar 

  • Zamora-Chimal C, Santillán M, Rodríguez-González J (2012) Influence of the feedback loops in the trp operon of B. subtilis on the system dynamic response and noise amplitude. J Theor Biol 310:119–131

    Article  CAS  PubMed  Google Scholar 

  • Zeron ES, Santillán M (2010) Distributions for negative-feedback-regulated stochastic gene expression: dimension reduction and numerical solution of the chemical master equation. J Theor Biol 264(2):377–385

    Article  CAS  PubMed  Google Scholar 

  • Zeron ES, Santillán M (2011) Numerical solution of the chemical master equation uniqueness and stability of the stationary distribution for chemical networks, and mRNA bursting in a gene network with negative feedback regulation. Methods Enzymol 487:147–169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mackey, M.C., Santillán, M., Tyran-Kamińska, M., Zeron, E.S. (2016). The Lactose Operon. In: Simple Mathematical Models of Gene Regulatory Dynamics. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45318-7_5

Download citation

Publish with us

Policies and ethics