Skip to main content

Generation of Human Islet Progenitor Cells via Epithelial-to-Mesenchymal Transition

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Epithelial to mesenchymal transition (EMT) has been shown to occur during generation of human islet-derived progenitor cells (hIPCs), which have been demonstrated to retain potential to differentiate into insulin-producing cells. EMT is a biological process where epithelial cells go through a phenotypic change to become more mesenchymal-like. EMT is reported to form the basis of three distinct physiological and pathological processes: embryo formation/implantation, tissue repair and carcinoma/metastasis. We demonstrated that human islets undergo EMT when exposed to growth-promoting conditions in vitro. Here, we provide an overview of EMT, generation of hIPCs and other stem cells with this phenomenon, the debate surrounding the origin of lineage-committed progenitor cells and finally the role of microRNAs in regulating EMT in hIPCs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119(6):1438–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699–702

    Article  CAS  PubMed  Google Scholar 

  • Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, Gallick GE, Logsdon CD, McConkey DJ, Choi W (2009) Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 69(14):5820–5828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50(8):1691–1697

    Article  CAS  PubMed  Google Scholar 

  • Atouf F, Park CH, Pechhold K, Ta M, Choi Y, Lumelsky NL (2007) No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro. Diabetes 56(3):699–702

    Article  CAS  PubMed  Google Scholar 

  • Bar-Nur O, Russ HA, Efrat S, Benvenisty N (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I, Ferber S (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278(34):31950–31957

    Article  CAS  PubMed  Google Scholar 

  • Bernardo AS, Cho CH, Mason S, Docherty HM, Pedersen RA, Vallier L, Docherty K (2009) Biphasic induction of Pdx1 in mouse and human embryonic stem cells can mimic development of pancreatic beta-cells. Stem Cells 27(2):341–351

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O’Neil JJ (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 97(14):7999–8004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68(19):7846–7854

    Article  CAS  PubMed  Google Scholar 

  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler AE, Huang A, Rao PN, Bhushan A, Hogan WJ, Rizza RA, Butler PC (2007) Hematopoietic stem cells derived from adult donors are not a source of pancreatic beta-cells in adult nondiabetic humans. Diabetes 56(7):1810–1816

    Article  CAS  PubMed  Google Scholar 

  • Carlotti F, Zaldumbide A, Loomans CJ, van Rossenberg E, Engelse M, de Koning EJ, Hoeben RC (2010) Isolated human islets contain a distinct population of mesenchymal stem cells. Islets 2(3):164–173

    Article  PubMed  Google Scholar 

  • Chase LG, Ulloa-Montoya F, Kidder BL, Verfaillie CM (2007) Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes 56(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Cieslik M, Hoang SA, Baranova N, Chodaparambil S, Kumar M, Allison DF, Xu X, Wamsley JJ, Gray L, Jones DR et al (2013) Epigenetic coordination of signaling pathways during the epithelial-mesenchymal transition. Epigenet Chromatin 6(1):28

    Article  CAS  Google Scholar 

  • Davani B, Ikonomou L, Raaka BM, Geras-Raaka E, Morton RA, Marcus-Samuels B, Gershengorn MC (2007) Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells 25(12):3215–3222

    Article  CAS  PubMed  Google Scholar 

  • Davani B, Ariely S, Ikonomou L, Oron Y, Gershengorn MC (2009) Human islet-derived precursor cells can cycle between epithelial clusters and mesenchymal phenotypes. J Cell Mol Med 13(8B):2570–2581

    Article  PubMed  Google Scholar 

  • Diaz-Lopez A, Diaz-Martin J, Moreno-Bueno G, Cuevas EP, Santos V, Olmeda D, Portillo F, Palacios J, Cano A (2015) Zeb1 and Snail1 engage miR-200f transcriptional and epigenetic regulation during EMT. Int J Cancer 136(4):E62–E73

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Efrat S (2008) In vitro expansion of human beta cells. Diabetologia 51(7):1338–1339

    Article  CAS  PubMed  Google Scholar 

  • Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127(3):514–525

    Article  CAS  PubMed  Google Scholar 

  • Fischer AN, Fuchs E, Mikula M, Huber H, Beug H, Mikulits W (2007) PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression. Oncogene 26(23):3395–3405

    Article  CAS  PubMed  Google Scholar 

  • Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R (2010) Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem 285(26):20202–20212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo R, Gambelli F, Gava B, Sasdelli F, Tellone V, Masini M, Marchetti P, Dotta F, Sorrentino V (2007) Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death Differ 14(11):1860–1871

    Article  CAS  PubMed  Google Scholar 

  • Garg M (2013) Epithelial-mesenchymal transition—activating transcription factors—multifunctional regulators in cancer. World J Stem Cells 5(4):188–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Gershengorn MC, Hardikar AA, Wei C, Geras-Raaka E, Marcus-Samuels B, Raaka BM (2004) Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306(5705):2261–2264

    Article  CAS  PubMed  Google Scholar 

  • Gershengorn MC, Geras-Raaka E, Hardikar AA, Raaka BM (2005) Are better islet cell precursors generated by epithelial-to-mesenchymal transition? Cell Cycle 4(3):380–382

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7(344):re8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    Article  CAS  PubMed  Google Scholar 

  • Hamada S, Satoh K, Miura S, Hirota M, Kanno A, Masamune A, Kikuta K, Kume K, Unno J, Egawa S et al (2013) miR-197 induces epithelial-mesenchymal transition in pancreatic cancer cells by targeting p120 catenin. J Cell Physiol 228(6):1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Hardikar AA, Marcus-Samuels B, Geras-Raaka E, Raaka BM, Gershengorn MC (2003) Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proc Natl Acad Sci USA 100(12):7117–7122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardikar AA, Walker MD, Lynn F (2012) Noncoding RNAs. Exp Diabetes Res 2012:629249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardikar AA, Farr RJ, Joglekar MV (2014) Circulating microRNAs: understanding the limits for quantitative measurement by real-time PCR. J Am Heart Assoc 3(1):e000792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hay ED (1990) Role of cell-matrix contacts in cell migration and epithelial-mesenchymal transformation. Cell Differ Dev 32(3):367–375

    Article  CAS  PubMed  Google Scholar 

  • Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21(7):763–770

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Noh H, Teng Y, Shao J, Rehmani H, Ding HF, Dong Z, Su SB, Shi H, Kim J et al (2014) SHOX2 is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells. Neoplasia 16(4):279–290 (e271–275)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Tong J, He F, Yu X, Fan L, Hu J, Tan J, Chen Z (2015) miR-141 regulates TGF-beta1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells. Int J Mol Med 35(2):311–318

    CAS  PubMed  Google Scholar 

  • Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111(6):843–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inada A, Bonner-Weir S, Toschi E (2006) How can we get more beta cells? Curr Diab Rep 6(2):96–101

    Article  PubMed  Google Scholar 

  • Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11(4):252–263

    Article  CAS  PubMed  Google Scholar 

  • Jafarian A, Taghikhani M, Abroun S, Pourpak Z, Allahverdi A, Soleimani M (2014) Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep 41(7):4783–4794

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25(8):1940–1953

    Article  CAS  PubMed  Google Scholar 

  • Joglekar MV, Hardikar AA (2010) Epithelial-to-mesenchymal transition in pancreatic islet beta cells. Cell Cycle 9(20):4077–4079

    Article  CAS  PubMed  Google Scholar 

  • Joglekar MV, Hardikar AA (2012) Isolation, expansion, and characterization of human islet-derived progenitor cells. Methods Mol Biol 879:351–366

    Article  CAS  PubMed  Google Scholar 

  • Joglekar MV, Joglekar VM, Joglekar SV, Hardikar AA (2009a) Human fetal pancreatic insulin-producing cells proliferate in vitro. J Endocrinol 201(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Joglekar MV, Patil D, Joglekar VM, Rao GV, Reddy DN, Sasikala M, Shouche Y, Hardikar AA (2009b) The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets 1(2):137–147

    Article  PubMed  Google Scholar 

  • Joglekar MV, Wei C, Hardikar AA (2010) Quantitative estimation of multiple miRNAs and mRNAs from a single cell. Cold Spring Harb Protoc 2010(8):pdb prot5478

    Article  PubMed  Google Scholar 

  • Joglekar MV, Parekh VS, Hardikar AA (2011) Islet-specific microRNAs in pancreas development, regeneration and diabetes. Indian J Exp Biol 49(6):401–408

    CAS  PubMed  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz E, Dubois-Marshall S, Sims AH, Gautier P, Caldwell H, Meehan RR, Harrison DJ (2011) An in vitro model that recapitulates the epithelial to mesenchymal transition (EMT) in human breast cancer. PLoS One 6(2):e17083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayali AG, Flores LE, Lopez AD, Kutlu B, Baetge E, Kitamura R, Hao E, Beattie GM, Hayek A (2007) Limited capacity of human adult islets expanded in vitro to redifferentiate into insulin-producing beta-cells. Diabetes 56(3):703–708

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA 103(35):13180–13185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28(22):6773–6784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M, Allgayer H (2012) MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer 130(9):2044–2053

    Article  CAS  PubMed  Google Scholar 

  • Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N (2014) MiRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol Biol Rep 41(4):2055–2066

    Article  CAS  PubMed  Google Scholar 

  • Lamouille S, Derynck R (2007) Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 178(3):437–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R (2012) TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci 125(Pt 5):1259–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamouille S, Subramanyam D, Blelloch R, Derynck R (2013) Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol 25(2):200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan L, Luo Y, Cui D, Shi BY, Deng W, Huo LL, Chen HL, Zhang GY, Deng LL (2013) Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. Int J Oncol 43(1):113–120

    CAS  PubMed  Google Scholar 

  • Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF (2004) No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53(3):616–623

    Article  CAS  PubMed  Google Scholar 

  • Lechner A, Nolan AL, Blacken RA, Habener JF (2005) Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue. Biochem Biophys Res Commun 327(2):581–588

    Article  CAS  PubMed  Google Scholar 

  • Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I, Karsan A (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204(12):2935–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Deng W, Nail CD, Bailey SK, Kraus MH, Ruppert JM, Lobo-Ruppert SM (2006) Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 25(4):609–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Deng W, Lobo-Ruppert SM, Ruppert JM (2007) Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26(31):4489–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Li H, Liu X, Xu D, Wang F (2014) MicroRNA-29b regulates TGF-beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells by targeting AKT2. Exp Cell Res 345(2):115–124

    Google Scholar 

  • Liao H, Bai Y, Qiu S, Zheng L, Huang L, Liu T, Wang X, Liu Y, Xu N, Yan X et al (2015) MiR-203 downregulation is responsible for chemoresistance in human glioblastoma by promoting epithelial-mesenchymal transition via SNAI2. Oncotarget 6(11):8914–8928

    Google Scholar 

  • Lili LN, Matyunina LV, Walker LD, Wells SL, Benigno BB, McDonald JF (2013) Molecular profiling supports the role of epithelial-to-mesenchymal transition (EMT) in ovarian cancer metastasis. J Ovarian Res 6(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim J, Thiery JP (2012) Epithelial-mesenchymal transitions: insights from development. Development 139(19):3471–3486

    Article  CAS  PubMed  Google Scholar 

  • Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H et al (2013) MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32(3):296–306

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1(6–7):303–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520):1389–1394

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T et al (2010) A MicroRNA targeting dicer for metastasis control. Cell 141(7):1195–1207

    Article  CAS  PubMed  Google Scholar 

  • Meivar-Levy I, Ferber S (2003) New organs from our own tissues: liver-to-pancreas transdifferentiation. Trends Endocrinol Metab 14(10):460–466

    Article  CAS  PubMed  Google Scholar 

  • Meivar-Levy I, Ferber S (2006) Regenerative medicine: using liver to generate pancreas for treating diabetes. Isr Med Assoc J 8(6):430–434

    PubMed  Google Scholar 

  • Meng Z, Fu X, Chen X, Zeng S, Tian Y, Jove R, Xu R, Huang W (2010) miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology 52(6):2148–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3(8):e2888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morton RA, Geras-Raaka E, Wilson LM, Raaka BM, Gershengorn MC (2007) Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol Cell Endocrinol 270(1–2):87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutskov V, Raaka BM, Felsenfeld G, Gershengorn MC (2007) The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells 25(12):3223–3233

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Tokura Y (2011) Epithelial-mesenchymal transition in the skin. J Dermatol Sci 61(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Nieto MA, Cano A (2012) The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol 22(5–6):361–368

    Article  CAS  PubMed  Google Scholar 

  • Okada H, Danoff TM, Kalluri R, Neilson EG (1997) Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol 273(4 Pt 2):F563–F574

    CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  • Ouziel-Yahalom L, Zalzman M, Anker-Kitai L, Knoller S, Bar Y, Glandt M, Herold K, Efrat S (2006) Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Res Commun 341(2):291–298

    Article  CAS  PubMed  Google Scholar 

  • Ozcan S (2009) MiR-30 family and EMT in human fetal pancreatic islets. Islets 1(3):283–285

    Article  PubMed  Google Scholar 

  • Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159(2):428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadimitriou E, Vasilaki E, Vorvis C, Iliopoulos D, Moustakas A, Kardassis D, Stournaras C (2012) Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: role in epithelial-to-mesenchymal transition. Oncogene 31(23):2862–2875

    Article  CAS  PubMed  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parnaud G, Bosco D, Berney T, Pattou F, Kerr-Conte J, Donath MY, Bruun C, Mandrup-Poulsen T, Billestrup N, Halban PA (2008) Proliferation of sorted human and rat beta cells. Diabetologia 51(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Phadnis SM, Joglekar MV, Dalvi MP, Muthyala S, Nair PD, Ghaskadbi SM, Bhonde RR, Hardikar AA (2011) Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo. Cytotherapy 13(3):279–293

    Article  PubMed  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511

    Article  CAS  PubMed  Google Scholar 

  • Radisky DC, LaBarge MA (2008) Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell 2(6):511–512

    Article  CAS  PubMed  Google Scholar 

  • Ranjan AK, Joglekar MV, Atre AN, Patole M, Bhonde RR, Hardikar AA (2012) Simultaneous imaging of microRNA or mRNA territories with protein territory in mammalian cells at single cell resolution. RNA Biol 9(7):949–953

    Article  CAS  PubMed  Google Scholar 

  • Rastaldi MP, Ferrario F, Giardino L, Dell’Antonio G, Grillo C, Grillo P, Strutz F, Muller GA, Colasanti G, D’Amico G (2002) Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 62(1):137–146

    Article  PubMed  Google Scholar 

  • Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11):1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB (2012) miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther 11(5):1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Russ HA, Bar Y, Ravassard P, Efrat S (2008) In vitro proliferation of cells derived from adult human beta-cells revealed by cell-lineage tracing. Diabetes 57(6):1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Russ HA, Ravassard P, Kerr-Conte J, Pattou F, Efrat S (2009) Epithelial-mesenchymal transition in cells expanded in vitro from lineage-traced adult human pancreatic beta cells. PLoS One 4(7):e6417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russ HA, Sintov E, Anker-Kitai L, Friedman O, Lenz A, Toren G, Farhy C, Pasmanik-Chor M, Oron-Karni V, Ravassard P et al (2011) Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. PLoS One 6(9):e25566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu S, Tosh D, Hardikar AA (2009) New sources of beta-cells for treating diabetes. J Endocrinol 202(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E, Eventov-Friedman S, Barshack I, Goldberg I, Pri-Chen S et al (2005) Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA 102(22):7964–7969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, van der Kooy D (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22(9):1115–1124

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhou J, Li Y, Ye F, Wan X, Lu W, Xie X, Cheng X (2014) miR-375 mediated acquired chemo-resistance in cervical cancer by facilitating EMT. PLoS One 9(10):e109299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  CAS  PubMed  Google Scholar 

  • Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U, Hermeking H (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10(24):4256–4271

    Article  CAS  PubMed  Google Scholar 

  • Slack JM, Tosh D (2001) Transdifferentiation and metaplasia—switching cell types. Curr Opin Genet Dev 11(5):581–586

    Article  CAS  PubMed  Google Scholar 

  • Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8(1):R7

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Zhao F, Wang Z, Liu Z, Chiang Y, Xu Y, Gao P, Xu H (2012) Inverse association between miR-194 expression and tumor invasion in gastric cancer. Ann Surg Oncol 19(Suppl 3):S509–S517

    Article  PubMed  Google Scholar 

  • Sordi V, Melzi R, Mercalli A, Formicola R, Doglioni C, Tiboni F, Ferrari G, Nano R, Chwalek K, Lammert E et al (2010) Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells 28(1):140–151

    CAS  PubMed  Google Scholar 

  • Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176(2A Suppl):26S–38S

    Article  CAS  PubMed  Google Scholar 

  • Steinestel K, Eder S, Schrader AJ, Steinestel J (2014) Clinical significance of epithelial-mesenchymal transition. Clin Transl Med 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C, Spoerke J, Jhunjhunwala S, Boyd Z, Januario T et al (2011) miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal 4(186):pt5

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam D, Blelloch R (2011) From microRNAs to targets: pathway discovery in cell fate transitions. Curr Opin Genet Dev 21(4):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Muniappan L, Tang G, Ozcan S (2009) Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15(2):287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Tao ZH, Wen D, Wan JL, Liu DL, Zhang S, Cui JF, Sun HC, Wang L, Zhou J et al (2014) MiR-612 suppresses the stemness of liver cancer via Wnt/beta-catenin signaling. Biochem Biophys Res Commun 447(1):210–215

    Article  CAS  PubMed  Google Scholar 

  • Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, Wang L, Zhou J, Ren ZG, Li YX et al (2013) miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med 210(4):789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taube JH, Malouf GG, Lu E, Sphyris N, Vijay V, Ramachandran PP, Ueno KR, Gaur S, Nicoloso MS, Rossi S et al (2013) Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Sci Rep 3:2687

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP (2013) TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest 123(1):150–163

    Article  CAS  PubMed  Google Scholar 

  • Teta M, Rankin MM, Long SY, Stein GM, Kushner JA (2007) Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 12(5):817–826

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142

    Article  CAS  PubMed  Google Scholar 

  • Tiwari N, Gheldof A, Tatari M, Christofori G (2012) EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 22(3):194–207

    Article  CAS  PubMed  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA (2010) Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res 70(12):5147–5154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Meulen T, Huising MO (2015) Role of transcription factors in the transdifferentiation of pancreatic islet cells. J Mol Endocrinol 54(2):R103–R117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542

    Article  CAS  PubMed  Google Scholar 

  • Vetter G, Saumet A, Moes M, Vallar L, Le Bechec A, Laurini C, Sabbah M, Arar K, Theillet C, Lecellier CH et al (2010) miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene 29(31):4436–4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicovac L, Aplin JD (1996) Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel) 156(3):202–216

    Article  CAS  Google Scholar 

  • Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A, Saleem M, Goodall GJ, Twigg SM, Cooper ME et al (2010a) E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 59(7):1794–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, Zhao J, Majerciak V, Gaur AB, Chen S et al (2010b) MicroRNA-204/211 alters epithelial physiology. FASEB J 24(5):1552–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Huang Y, Guo Q, Fan X, Lu Y, Zhu S, Wang Y, Bo X, Chang X, Zhu M et al (2014) Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA. Diabetes Res Clin Pract 104(3):383–392

    Article  CAS  PubMed  Google Scholar 

  • Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, Wiemann S, Sahin O (2013) Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 32(9):1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Weber CE, Li NY, Wai PY, Kuo PC (2012) Epithelial-mesenchymal transition, TGF-beta, and osteopontin in wound healing and tissue remodeling after injury. J Burn Care Res 33(3):311–318

    Article  PubMed  Google Scholar 

  • Weinberg N, Ouziel-Yahalom L, Knoller S, Efrat S, Dor Y (2007) Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic beta-cells. Diabetes 56(5):1299–1304

    Article  CAS  PubMed  Google Scholar 

  • Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168

    Article  CAS  PubMed  Google Scholar 

  • Wong W, Joglekar MV, Satoor SN, Sahu S, Parekh VS, Hardikar AA (2014) Lineage-committed pancreatic progenitors and stem cells. In: Turksen K (ed) Adult stem cells. Springer, New York, pp 339–357

    Chapter  Google Scholar 

  • Xia H, Ooi LL, Hui KM (2013) MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 58(2):629–641

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Sun Q, Zhang J, Yu J, Chen W, Zhang Z (2013) Downregulation of miR-153 contributes to epithelial-mesenchymal transition and tumor metastasis in human epithelial cancer. Carcinogenesis 34(3):539–549

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Kojima I (2005) Regenerative medicine of the pancreatic beta cells. J Hepatobiliary Pancreat Surg 12(3):218–226

    Article  PubMed  Google Scholar 

  • Ye L, Robertson MA, Hesselson D, Stainier DY, Anderson RM (2015) Glucagon is essential for alpha cell transdifferentiation and beta cell neogenesis. Development 142(8):1407–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Smolen GA, Zhang J, Wittner B, Schott BJ, Brachtel E, Ramaswamy S, Maheswaran S, Haber DA (2009) A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes Dev 23(15):1737–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalzman M, Anker-Kitai L, Efrat S (2005) Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype. Diabetes 54(9):2568–2575

    Article  CAS  PubMed  Google Scholar 

  • Zaravinos A (2015) The regulatory role of MicroRNAs in EMT and cancer. J Oncol 2015:865816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119(6):1429–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB et al (2007a) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R (2007b) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282(32):23337–23347

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu S, Shi R, Zhao G (2011) miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet 204(9):486–491

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang X, Chen P (2013a) MiR-204 down regulates SIRT1 and reverts SIRT1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells. BMC Cancer 13:290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LY, Liu M, Li X, Tang H (2013b) miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J Biol Chem 288(6):4035–4047

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW, Guan XY, Lin MC, Zeng YX et al (2012) The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 61(2):278–289

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Fan J, Ding X, Peng W, Yu X, Chen Y, Nie J (2010) TGF-{beta}-induced MiR-491-5p expression promotes Par-3 degradation in rat proximal tubular epithelial cells. J Biol Chem 285(51):40019–40027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mugdha V. Joglekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wong, W., Hardikar, A.A., Joglekar, M.V. (2016). Generation of Human Islet Progenitor Cells via Epithelial-to-Mesenchymal Transition. In: A. Hardikar, A. (eds) Pancreatic Islet Biology. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-45307-1_9

Download citation

Publish with us

Policies and ethics