Skip to main content

MicroRNAs: A Link Between Type 1 Diabetes and the Environment?

  • Chapter
  • First Online:
Pancreatic Islet Biology

Abstract

Type 1 diabetes (T1D ) is an autoimmune disease characterized by selective destruction of insulin-producing pancreatic β-cells. Although T1D is known to be largely immunological, increasing evidence suggests the importance of genetic and environmental factors, although the relative importance of these components is yet to be fully elucidated. There is a substantial body of evidence to support a major role for viruses in the initiation of islet autoimmunity and/or acceleration to clinical T1D. In particular, epidemiological data as well as substantial data obtained through animal models, cell lines and human studies support a role for enterovirus (EV) infections. EV infections are more frequent in newly diagnosed T1D patients compared to healthy controls, EV-RNA and protein have been detected in intestine, blood and pancreatic biopsies of patients with T1D. EVs contribute to β-cell damage by multiple mechanisms, such as direct cytolysis of infected β-cells, islet inflammation, and molecular mimicry. MicroRNAs (miRNAs) are endogenous small non-coding RNAs molecules that regulate gene expression through translational repression or gene silencing. They affect cell growth, proliferation, differentiation, development, apoptosis and maintenance of tissue identity. They are implicated in immune system regulation and autoimmune destruction of pancreatic β-cells. The relationship between EVs infections, miRNAs, and development of T1D is discussed aiming to describe genes encoding miRNA signatures that may be involved in T1D. Many miRNAs, and potentially other small regulatory RNA molecules discussed through this chapter, are involved in immune regulation and modulation, which may provide novel diagnostic, prognostic and therapeutic alternatives for Type 1 diabetes (T1D) in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdool Karim Q (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329(5996):1168–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abuhatzira L et al (2015) Multiple microRNAs within the 14q32 cluster target the mRNAs of major type 1 diabetes autoantigens IA-2, IA-2beta, and GAD65. FASEB J 29(10):4374–4383

    Google Scholar 

  • Ai J et al (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391(1):73–77

    Article  CAS  PubMed  Google Scholar 

  • Aly H, Gottlieb P (2009) The honeymoon phase: intersection of metabolism and immunology. Curr Opin Endocrinol Diabetes Obes 16(4):286–292

    Article  CAS  PubMed  Google Scholar 

  • Argyropoulos C et al (2015) Urinary microrna profiling predicts the development of microalbuminuria in patients with Type 1 diabetes. J Clin Med 4(7):1498–1517

    Article  PubMed  PubMed Central  Google Scholar 

  • Arvan P et al (2012) Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb Perspect Med 2(8)

    Google Scholar 

  • Babu DA et al (2008) Pdx1 and BETA2/NeuroD1 participate in a transcriptional complex that mediates short-range DNA looping at the insulin gene. J Biol Chem 283(13):8164–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon S et al (2015) MicroRNA-224 is readily detectable in urine of individuals with diabetes mellitus and is a potential indicator of beta-cell demise. Genes (Basel) 6(2):399–416

    CAS  Google Scholar 

  • Barbagallo D et al (2013) miR-296-3p, miR-298-5p and their downstream networks are causally involved in the higher resistance of mammalian pancreatic alpha cells to cytokine-induced apoptosis as compared to beta cells. BMC Genom 14:62

    Article  CAS  Google Scholar 

  • Baroukh N, Ravier MA et al (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F, Schuilenburg H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS, The Type 1 Diabetes Genetics Consortium (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2009a) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2009b) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bason C et al (2013) In type 1 diabetes a subset of anti-coxsackievirus b4 antibodies recognize autoantigens and induce apoptosis of pancreatic Beta cells. PLoS ONE 8(2):e57729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennasser Y et al (2005) Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22(5):607–619

    Article  CAS  PubMed  Google Scholar 

  • Berkhout B, Jeang KT (2007) RISCy business: microRNAs, pathogenesis, and viruses. J Biol Chem 282(37):26641–26645

    Article  CAS  PubMed  Google Scholar 

  • Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun JE et al (2011) GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44(1):120–133

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Egana V et al (2012) Inflammation-mediated regulation of MicroRNA expression in transplanted pancreatic islets. J Transplant 2012:723614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai X et al (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102(15):5570–5575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron JE et al (2008) Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 82(4):1946–1958

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genom Hum Genet 8:215–239

    Article  CAS  Google Scholar 

  • Chehadeh W et al (2000) Increased level of interferon-alpha in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis 181(6):1929–1939

    Article  CAS  PubMed  Google Scholar 

  • Chekulaeva M et al (2011) miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18(11):1218–1226

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2011) A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J 25(12):4511–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L et al (2012a) Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep 27(3):854–860

    CAS  PubMed  Google Scholar 

  • Chen X et al (2012b) Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer 130(7):1620–1628

    Article  CAS  PubMed  Google Scholar 

  • Chen YH et al (2013) miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62(7):2278–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang PS, Huang ML, Luo ST, Lin TY, Tsao KC, Lee MS (2012) Comparing molecular methods for early detection and serotyping of enteroviruses in throat swabs of pediatric patients. PLoS ONE 7(10):e48269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen LL et al (2013) MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer. Int J Cancer 133(1):67–78

    Article  PubMed  CAS  Google Scholar 

  • Chuang TY et al (2015) MicroRNA-223 expression is upregulated in insulin resistant human adipose tissue. J Diabetes Res 2015:943659

    Article  PubMed  PubMed Central  Google Scholar 

  • Cinek O, Tapia G, Witsø E, Kramna L, Holkova K, Rasmussen T, Stene LC, Rønningen KS (2012) Enterovirus RNA in peripheral blood may be associated with the variants of rs1990760, a common type 1 diabetes associated polymorphism in IFIH1. PLoS ONE 7(11):e48409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collares CV et al (2013) Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes 6:491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins AS et al (2013) miR-19a: an effective regulator of SOCS3 and enhancer of JAK-STAT signalling. PLoS ONE 8(7):e69090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsten MF et al (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3(6):499–506

    Article  PubMed  Google Scholar 

  • Craig ME et al (2003) Reduced frequency of HLA DRB1*03-DQB1*02 in children with type 1 diabetes associated with enterovirus RNA. J Infect Dis 187(10):1562–1570

    Article  CAS  PubMed  Google Scholar 

  • Cui L et al (2011) Serum microRNA expression profile distinguishes enterovirus 71 and coxsackievirus 16 infections in patients with hand-foot-and-mouth disease. PLoS ONE 6(11):e27071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlquist GG, Boman JE, Juto P (1999) Enteroviral RNA and IgM antibodies in early pregnancy and risk for childhood-onset IDDM in offspring. Diabetes Care 22(2):364–365

    Article  CAS  PubMed  Google Scholar 

  • Deiuliis JA (2015) MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond) 40:88–101

    Article  CAS  Google Scholar 

  • Delvecchio M et al (2014) Low prevalence of HNF1A mutations after molecular screening of multiple MODY genes in 58 Italian families recruited in the pediatric or adult diabetes clinic from a single Italian hospital. Diabetes Care 37(12):e258–e260

    Article  CAS  PubMed  Google Scholar 

  • Dharap A et al (2013) MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS ONE 8(11):e79467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dippe SE et al (1975) Lack of causal association between Coxsackie B4 virus infection and diabetes. Lancet 1(7920):1314–1317

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Lopez A et al (2005) Mutations in MODY genes are not common cause of early-onset type 2 diabetes in Mexican families. Jop 6(3):238–245

    PubMed  Google Scholar 

  • Dotta F et al (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 104(12):5115–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dp B (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  Google Scholar 

  • Du C et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10(12):1252–1259

    Article  CAS  PubMed  Google Scholar 

  • El Ouaamari A et al (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10):2708–2717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eldor R, Kassem S, Raz I (2009) Immune modulation in type 1 diabetes mellitus using DiaPep277: a short review and update of recent clinical trial results. Diabetes Metab Res Rev 25(4):316–320

    Article  CAS  PubMed  Google Scholar 

  • Elfaitouri A et al (2007) Recent enterovirus infection in type 1 diabetes: evidence with a novel IgM method. J Med Virol 79(12):1861–1867

    Article  CAS  PubMed  Google Scholar 

  • Elfving M et al (2008) Maternal enterovirus infection during pregnancy as a risk factor in offspring diagnosed with type 1 diabetes between 15 and 30 years of age. Exp Diabetes Res 2008:271958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erener S et al (2013) Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology 154(2):603–608

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14

    Article  CAS  PubMed  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  • Fan W et al (2012) Identification of microRNA-31 as a novel regulator contributing to impaired interleukin-2 production in T cells from patients with systemic lupus erythematosus. Arthritis Rheum 64(11):3715–3725

    Article  CAS  PubMed  Google Scholar 

  • Fang L et al (2011) MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene 30(7):806–821

    Article  CAS  PubMed  Google Scholar 

  • Farr RJ et al (2013) Circulating non-coding RNAs as biomarkers of beta cell death in diabetes. Pediatr Endocrinol Rev 11(1):14–20

    PubMed  Google Scholar 

  • Feederle R et al (2011) A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 7(2):e1001294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  • Filippi CM, von Herrath MG (2008) Viral trigger for type 1 diabetes: pros and cons. Diabetes 57(11):2863–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C et al (2010) Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer 116(1):41–49

    CAS  PubMed  Google Scholar 

  • Garzon R, Pichiorri F, Palumbo T et al (2007) MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26:4148–4157

    Article  CAS  PubMed  Google Scholar 

  • Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5(10):827–835

    Article  CAS  PubMed  Google Scholar 

  • Gidlof O et al (2011) Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118(4):217–226

    Article  PubMed  Google Scholar 

  • Gilad S et al (2008) Serum microRNAs are promising novel biomarkers. PLoS ONE 3(9):e3148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godshalk SE, Bhaduri-McIntosh S, Slack FJ (2008) Epstein-Barr virus-mediated dysregulation of human microRNA expression. Cell Cycle 7(22):3595–3600

    Article  CAS  PubMed  Google Scholar 

  • Griner PF et al (1981) Selection and interpretation of diagnostic tests and procedures. Principles and applications. Ann Intern Med 94(4 Pt 2):557–592

    CAS  PubMed  Google Scholar 

  • Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9(9):513–521

    Article  CAS  PubMed  Google Scholar 

  • Guo LM et al (2009) MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J 276(19):5537–5546

    Article  CAS  PubMed  Google Scholar 

  • Guo Z et al (2012) miRNA-939 regulates human inducible nitric oxide synthase posttranscriptional gene expression in human hepatocytes. Proc Natl Acad Sci USA 109(15):5826–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haasnoot J et al (2007) The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3(6):e86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haverkos HW et al (2003) Enteroviruses and type 1 diabetes mellitus. Biomed Pharmacother 57(9):379–385

    Article  CAS  PubMed  Google Scholar 

  • He J et al (2013) MiR-21 confers resistance against CVB3-induced myocarditis by inhibiting PDCD4-mediated apoptosis. Clin Invest Med 36(2):E103–E111

    CAS  PubMed  Google Scholar 

  • Hemida MG et al (2013) MicroRNA-203 enhances coxsackievirus B3 replication through targeting zinc finger protein-148. Cell Mol Life Sci 70(2):277–291

    Article  CAS  PubMed  Google Scholar 

  • Heneghan HM et al (2010) Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15(7):673–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Hennessy E et al (2010) Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res Commun 396(2):457–462

    Article  CAS  PubMed  Google Scholar 

  • Hezova R, Slaby O, Faltejskova P et al (2010) microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 260:70–74

    Article  CAS  PubMed  Google Scholar 

  • Ho BC et al (2011) Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9(1):58–69

    Article  CAS  PubMed  Google Scholar 

  • Hober D, Sauter P (2010) Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6(5):279–289

    Article  PubMed  Google Scholar 

  • Honeyman MC, Coulson BS, Stone NL, Gellert SA, Goldwater PN, Steele CE, Couper JJ, Tait BD, Colman PG, Harrison LC (2000) Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 49:1319–1324

    Article  CAS  PubMed  Google Scholar 

  • Honeyman MC, Stone NL, Harrison LC (1998) T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med 4:231–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horn G, Long C, Erlich H (1988) Allelic sequence of the HLA-DQ loci: relationship to serology and to insulin-dependent diabetes susceptibility. Proc Natl Acad Sci USA 85:6012–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z et al (2012) Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis 33(4):828–834

    Article  CAS  PubMed  Google Scholar 

  • Huang Z et al (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127(1):118–126

    Article  CAS  PubMed  Google Scholar 

  • Huang L et al (2013) Down-regulation of miR-301a suppresses pro-inflammatory cytokines in Toll-like receptor-triggered macrophages. Immunology 140(3):314–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S et al (2014) HCV Core Protein-Induced Down-Regulation of microRNA-152 Promoted Aberrant Proliferation by Regulating Wnt1 in HepG2 Cells. PLoS ONE 9(1):e81730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hui W et al (2013) MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1. PLoS ONE 8(1):e54932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Hyoty H (2002) Enterovirus infections and type 1 diabetes. Ann Med 34(3):138–147

    Article  PubMed  Google Scholar 

  • Hyoty H, Reunanen A, Ilonen J, Surcel HM, Rilva A, Kaar ML, Huupponen T, Makela AL et al (1988) Mumps infections in the etiology of type 1 (insulin-dependent) diabetes. Diabetes Res 9:111–116

    CAS  PubMed  Google Scholar 

  • Hyӧty H, Taylor K (2002) The role of viruses in human diabetes. Diabetologia 45:1353–1361

    Article  CAS  Google Scholar 

  • Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanovska I et al (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28(7):2167–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacovetti C, Abderrahmani A, Parnaud G, Jonas JC, Peyot ML, Cornu M, Laybutt R, Meugnier E, Rome S, Thorens B, Prentki M, Bosco D, Regazzi R (2012) MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest 122(10):3541–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaidane H, Hober D (2008) Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes Metab 34(6 Pt 1):537–548

    Article  CAS  PubMed  Google Scholar 

  • Jeong HC et al (2011) Aberrant expression of let-7a miRNA in the blood of non-small cell lung cancer patients. Mol Med Rep 4(2):383–387

    CAS  PubMed  Google Scholar 

  • Ji J, Wang XW (2009) New kids on the block: diagnostic and prognostic microRNAs in hepatocellular carcinoma. Cancer Biol Ther 8(18):1686–1693

    Article  PubMed  Google Scholar 

  • Joglekar MV et al (2007b) MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 311(2):603–612

    Article  CAS  PubMed  Google Scholar 

  • Joglekar MV et al (2009b) The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets 1(2):137–147

    Article  PubMed  Google Scholar 

  • Joglekar MV, Joglekar VM, Hardikar AA (2009a) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113

    Article  CAS  PubMed  Google Scholar 

  • Joglekar MV, Parekh VS, Hardikar AA (2011) Islet-specific microRNAs in pancreas development, regeneration and diabetes. Indian J Exp Biol 49(6):401–408

    CAS  PubMed  Google Scholar 

  • Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA (2007a) MicroRNAprofiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 311:603–612

    Article  CAS  PubMed  Google Scholar 

  • Jun H-S, Yoon J-W (2003) A new look at viruses in type 1 diabetes. Diabetes Metab Res Rev 19:8–31

    Article  CAS  PubMed  Google Scholar 

  • Keller A et al (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS ONE 4(10):e7440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385

    Article  CAS  PubMed  Google Scholar 

  • Kim SW et al (2012) MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci USA 109(20):7865–7870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein D, Misawa R, Bravo-Egana V, Vargas N, Rosero S et al (2013) MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS ONE 8(1):e55064. doi:10.1371/journal.pone.0055064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloosterman WP et al (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knip M et al (2005) Environmental triggers and determinants of type 1 diabetes. Diabetes 54(Suppl 2):S125–S136

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N et al (2012) Identification of miR-30d as a novel prognostic maker of prostate cancer. Oncotarget 3(11):1455–1471

    Article  PubMed  PubMed Central  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  • Kumar P et al (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS ONE 8(7):e69807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laitinen OH et al (2013) Coxsackievirus B1 Is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes

    Google Scholar 

  • Latreille M et al (2015) miR-375 gene dosage in pancreatic beta-cells: implications for regulation of beta-cell mass and biomarker development. J Mol Med (Berl) 93:1159–1169

    Article  CAS  Google Scholar 

  • Lecellier CH et al (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308(5721):557–560

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69(19):7569–7576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LM et al (2010) Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res 70(23):9798–9807

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2013) MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-lambda1. Protein Cell 4(2):130–141

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2010) Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology 398(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Liu R et al (2011) A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 47(5):784–791

    Article  CAS  PubMed  Google Scholar 

  • Liu L et al (2012a) miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep 5(3):753–760

    CAS  PubMed  Google Scholar 

  • Liu AM et al (2012b) Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open 2(2):e000825

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2012c) Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int J Cancer 131(3):683–691

    Article  CAS  PubMed  Google Scholar 

  • Liu YL et al (2013) MicroRNA-21 and -146b are involved in the pathogenesis of murine viral myocarditis by regulating TH-17 differentiation. Arch Virol 158(9):1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Lorente-Cebrian S et al (2014) MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-alpha. PLoS ONE 9(1):e86800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovis P et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57(10):2728–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu LF et al (2010) Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142(6):914–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z et al (2011) miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J 30(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  CAS  PubMed  Google Scholar 

  • Lynn FC et al (2007b) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56(12):2938–2945

    Article  CAS  PubMed  Google Scholar 

  • Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007a) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945

    Article  CAS  PubMed  Google Scholar 

  • Ma F et al (2011) The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 12(9):861–869

    Article  CAS  PubMed  Google Scholar 

  • Maroney PA et al (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13(12):1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Meder B et al (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Melkman-Zehavi T et al (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30(5):835–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miersch S et al (2013) Serological autoantibody profiling of type 1 diabetes by protein arrays. J Proteomics 94:486–496

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimura R et al (2011) Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer 105(11):1733–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita S et al (2009) Dicer is required for maintaining adult pancreas. PLoS ONE 4(1):e4212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moya-Suri V et al (2005) Enterovirus RNA sequences in sera of schoolchildren in the general population and their association with type 1-diabetes-associated autoantibodies. J Med Microbiol 54(Pt 9):879–883

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Imler JL (2007) Dicing with viruses: microRNAs as antiviral factors. Immunity 27(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Narendran P, Estella E, Fourlanos S (2005) Immunology of type 1 diabetes. QJM 98(8):547–556

    Article  CAS  PubMed  Google Scholar 

  • Nathans R et al (2009) Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 34(6):696–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng EK et al (2009) Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58(10):1375–1381

    Article  CAS  PubMed  Google Scholar 

  • Nielsen LB et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362

    PubMed  PubMed Central  Google Scholar 

  • Oikarinen M et al (2008) Detection of enteroviruses in the intestine of type 1 diabetic patients. Clin Exp Immunol 151(1):71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikarinen S, Martiskainen M, Tauriainen S, Huhtala H, Ilonen J, Veijola R, Simell O, Knip M, Hyöty H (2011) Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes 60(1):276–279

    Article  CAS  PubMed  Google Scholar 

  • Oikarinen S et al (2013) Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes

    Google Scholar 

  • Othumpangat S et al (2013) Expression of non-structural-1A binding protein in lung epithelial cells is modulated by miRNA-548an on exposure to influenza A virus. Virology 447(1–2):84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuka M et al (2007) Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • Pak CY (1988) E.H., McArthur RG, Yoon JW: Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet 2:1–4

    Article  CAS  PubMed  Google Scholar 

  • Patterson CC et al (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373(9680):2027–2033

    Article  PubMed  Google Scholar 

  • Pedersen IM et al (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449(7164):919–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen CP et al (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Marks D, Enright AJ, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  CAS  PubMed  Google Scholar 

  • Pillai RS et al (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309(5740):1573–1576

    Article  CAS  PubMed  Google Scholar 

  • Plaisance V et al (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281(37):26932–26942

    Article  CAS  PubMed  Google Scholar 

  • Polioudakis D et al (2013) A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res 41(4):2239–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potenza N et al (2011) Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res 39(12):5157–5163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poy MN et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230

    Article  CAS  PubMed  Google Scholar 

  • Poy MN et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106(14):5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preiss T, Hentze M (2003) Starting the protein synthesis machine: eukaryotic translation initiation. BioEssays 25(12):1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Pyke DA () The genetic perspective-putting research into practice. In DiabetesLarkins RG, Zimmet PZ, Chisholm DJ (eds). Exerpta Medica: Amsterdam, 1989; 1227-1230., 1988

    Google Scholar 

  • Qi J et al (2013) Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma. Neoplasma 60(2):135–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu S et al (2012) MicroRNA-330 is an oncogenic factor in glioblastoma cells by regulating SH3GL2 gene. PLoS ONE 7(9):e46010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi N et al (2013) (6)-Gingerolinduced myeloid leukemia cell death is initiated by reactive oxygen species and activation of miR-27b expression. Free Radic Biol Med 68C:288–301

    Google Scholar 

  • Redova M et al (2012) Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 10:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson SJ et al (2009) The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52(6):1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Roggli E et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roggli E et al (2012) Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 61(7):1742–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roivainen M, Ylipaasto P, Savolainen C, Galama J, Hovi T, Otonkokski T (2002) Functional impairment and killing of human beta cells by enteroviruses: the capacity is shared by a wide range of serotypes, but the extent is characteristic of individual virus strains. Diabetologia 45:693–702

    Article  CAS  PubMed  Google Scholar 

  • Rosero S et al (2010) MicroRNA signature of the human developing pancreas. BMC Genom 11:509

    Article  CAS  Google Scholar 

  • Rossato M et al (2012) IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci USA 109(45):E3101–E3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Q et al (2011b) The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci USA 108(29):12030–12035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Q, Wang T, Kameswaran V, Wei Q, Johnson DS, Matschinsky F, Shi W (2011a) Chen YH (2011) The microRNA-21 − PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death. PNAS 108(29):10230–10235

    Article  Google Scholar 

  • Salas-Perez F et al (2013) MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218(5):733–737

    Article  CAS  PubMed  Google Scholar 

  • Sane F et al (2013) Coxsackievirus B4 can infect human pancreas ductal cells and persist in ductal-like cell cultures which results in inhibition of Pdx1 expression and disturbed formation of islet-like cell aggregates. Cell Mol Life Sci 70(21):4169–4180

    Article  CAS  PubMed  Google Scholar 

  • Santin I, Eizirik DL (2013) Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and beta-cell apoptosis. Diabetes Obes Metab 15(Suppl 3):71–81

    Article  CAS  PubMed  Google Scholar 

  • Sarma NJ et al (2014) Hepatitis C virus induced changes in miRNA-107 and miRNA-449a modulate CCL2 by targeting IL6 receptor complex in hepatitis. J Virol

    Google Scholar 

  • Sarmiento L et al (2007) Occurrence of enterovirus RNA in serum of children with newly diagnosed type 1 diabetes and islet cell autoantibody-positive subjects in a population with a low incidence of type 1 diabetes. Autoimmunity 40(7):540–545

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani G et al (2011a) Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27(8):862–866

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani G et al (2012) MicroRNA expression fingerprint in serum of type 1 diabetic patients. Diabetologia 55:S48

    Google Scholar 

  • Sebastiani G, Vendrame F, Dotta F (2011b) MicroRNAs as new tools for exploring type 1 diabetes: relevance for immunomodulation and transplantation therapy. Transplant Proc 43(1):2

    Article  CAS  Google Scholar 

  • Setyowati D et al (2012) miRNAs and diabetes mellitus. Expert Rev Endocrinol Metab 7(3):281–300

    Article  CAS  Google Scholar 

  • Shen J et al (2011) Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest 91(4):579–587

    Article  CAS  PubMed  Google Scholar 

  • Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108(12):3646–3653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simion A et al (2010) MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun 391(1):293–298

    Article  CAS  PubMed  Google Scholar 

  • Smith AL et al (2012) The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31(50):5162–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smura T et al (2010) Cellular tropism of human enterovirus D species serotypes EV-94, EV-70, and EV-68 in vitro: implications for pathogenesis. J Med Virol 82(11):1940–1949

    Article  CAS  PubMed  Google Scholar 

  • Smyk D et al (2012) Autoimmunity and environment: am I at risk? Clin Rev Allergy Immunol 42(2):199–212

    Article  CAS  PubMed  Google Scholar 

  • Sonenberg MRFN (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6)

    Google Scholar 

  • Steck AK, Rewers MJ (2011) Genetics of type 1 diabetes. Clin Chem 57(2):176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner DF et al (2011) MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity 35(2):169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storling J, Brorsson CA (2013) Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes. Curr Diab Rep 13(5):633–641

    Article  CAS  PubMed  Google Scholar 

  • Su C et al (2011) Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells. Virol J 8:354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan CS, Ganem D (2005) MicroRNAs and viral infection. Mol Cell 20(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Sun LL et al (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91(1):94–100

    Article  CAS  PubMed  Google Scholar 

  • Takahashi P et al (2014) MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene 539(2):213–223

    Article  CAS  PubMed  Google Scholar 

  • Talsky KB, Collins K (2010) Initiation by a eukaryotic RNA-dependent RNA polymerase requires looping of the template end and is influenced by the template-tailing activity of an associated uridyltransferase. J Biol Chem 285(36):27614–27623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X et al (2009a) Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15(2):287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y et al (2009b) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60(4):1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Tian Y et al (2012) MicroRNA miR-451 downregulates the PI3 K/AKT pathway through CAB39 in human glioma. Int J Oncol 40(4):1105–1112

    CAS  PubMed  Google Scholar 

  • Tong L et al (2013) MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence. Nucleic Acids Res 41(6):3760–3771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triboulet R et al (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315(5818):1579–1582

    Article  CAS  PubMed  Google Scholar 

  • Tsujiura M et al (2010) Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer 102(7):1174–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Bunt M, Gaulton KJ, Parts L, Moran I, Johnson PR, Lindgren CM, Ferrer J, Gloyn AL, McCarthy MI (2013) The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS ONE 8(1):e55272. doi:10.1371/journal.pone.0055272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Werf N et al (2007) Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 23(3):169–183

    Article  PubMed  CAS  Google Scholar 

  • Ventriglia G et al (2015) MicroRNAs: novel players in the dialogue between pancreatic islets and immune system in autoimmune diabetes. Biomed Res Int 2015:749734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO (2001) Manual for the virological investigation of polio WHO/EPI/GEN/97.01. World Health Organization, Geneva

    Google Scholar 

  • Wang FZ et al (2008) Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82(18):9065–9074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2009) Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 15(4):637–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GK et al (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666

    Article  PubMed  CAS  Google Scholar 

  • Wang R et al (2011) Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Intern Med 50(17):1789–1795

    Article  CAS  PubMed  Google Scholar 

  • Wang L et al (2012a) MiR-342-5p suppresses coxsackievirus B3 biosynthesis by targeting the 2C-coding region. Antiviral Res 93(2):270–279

    Article  CAS  PubMed  Google Scholar 

  • Wang XF et al (2012b) MiR-181d acts as a tumor suppressor in glioma by targeting K-ras and Bcl-2. J Cancer Res Clin Oncol 138(4):573–584

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (2013a) miR-106a is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS. Mol Carcinog 52(8):634–646

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2013b) MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells. Diabetes 62(3):887–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen BP et al (2013) MicroRNA-23b inhibits enterovirus 71 replication through downregulation of EV71 VPl protein. Intervirology 56(3):195–200

    Article  CAS  PubMed  Google Scholar 

  • Winkler C et al (2012) A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun 13(7):549–555

    Article  CAS  PubMed  Google Scholar 

  • Wu W et al (2013) MicroRNA-18a modulates STAT3 activity through negative regulation of PIAS3 during gastric adenocarcinogenesis. Br J Cancer 108(3):653–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103(11):4034–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia H et al (2013) MiR-218 sensitizes glioma cells to apoptosis and inhibits tumorigenicity by regulating ECOP-mediated suppression of NF-kappaB activity. Neuro Oncol 15(4):413–422

    Article  CAS  PubMed  Google Scholar 

  • Xia JT et al (2014) MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-kappaB signaling. J Transl Med 12(1):33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X et al (2013) Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. J Clin Invest 123(2):630–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H et al (2013) MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology 58(1):205–217

    Article  CAS  PubMed  Google Scholar 

  • Yang M et al (2015) Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes 7(2):158–165

    Article  CAS  PubMed  Google Scholar 

  • Ye X et al (2013) MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/beta-catenin signal pathways. Cell Mol Life Sci 70(23):4631–4644

    Article  CAS  PubMed  Google Scholar 

  • Yeung W-CG, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H et al (2002) Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset. Diabetes 51(6):1964–1971

    Article  CAS  PubMed  Google Scholar 

  • Yoon JW, Onodera T, Notkins AL (1978) Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J Exp Med 148(4):1068–1080

    Article  CAS  PubMed  Google Scholar 

  • Yuan K et al (2012) Role of miR-148a in hepatitis B associated hepatocellular carcinoma. PLoS ONE 7(4):e35331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue X et al (2012) MicroRNA-205 functions as a tumor suppressor in human glioblastoma cells by targeting VEGF-A. Oncol Rep 27(4):1200–1206

    CAS  PubMed  Google Scholar 

  • Zampetaki A et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817

    Article  CAS  PubMed  Google Scholar 

  • Zen K, Zhang CY (2012) Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32(2):326–348

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24:138–148

    Article  CAS  PubMed  Google Scholar 

  • Zhang C et al (2010) Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol 36(6):1503–1512

    CAS  PubMed  Google Scholar 

  • Zhang Q et al (2013) MicroRNAs regulate the pathogenesis of CVB3-induced viral myocarditis. Intervirology 56(2):104–113

    Article  CAS  PubMed  Google Scholar 

  • Zhao H et al (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS ONE 5(10):e13735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X et al (2012a) MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J Biol Chem 287(37):31155–31164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J et al (2012b) Downregulation of PCAF by miR-181a/b provides feedback regulation to TNF-alpha-induced transcription of proinflammatory genes in liver epithelial cells. J Immunol 188(3):1266–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z et al (2013) Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J Virol 87(10):5645–5656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y et al (2015) miR-101a and miR-30b contribute to inflammatory cytokine-mediated beta-cell dysfunction. Lab Invest 95:1387–1397

    Article  CAS  PubMed  Google Scholar 

  • Zhou J et al (2011) Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol 29(36):4781–4788

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, He H (2008) MicroRNA genes. Ann N Y Acad Sci 1150:72

    Article  CAS  PubMed  Google Scholar 

  • Zhu W et al (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zouidi F et al (2014) Contribution of PTPN22, CD28, CTLA-4 and ZAP-70 variants to the risk of type 1 diabetes in Tunisians. Gene 533(1):420–426

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammira Al-Shabeeb Akil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akil, A.AS., Ho, A., Figueroa-Crisostomo, C.A., Rawlinson, W.D., Craig, M.E. (2016). MicroRNAs: A Link Between Type 1 Diabetes and the Environment?. In: A. Hardikar, A. (eds) Pancreatic Islet Biology. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-45307-1_7

Download citation

Publish with us

Policies and ethics