Skip to main content

Case Study 2.1: Detection and Compensation of Workpiece Distortions During Machining of Slender and Thin-Walled Aerospace Parts

  • Chapter
  • First Online:
Intelligent Fixtures for the Manufacturing of Low Rigidity Components

Abstract

In machining of thin-walled large parts in aerospace industry, workpiece distortions occur during and after the processes due to residual stresses which are introduced or set free by the material removal process. These distortions lead to an inacceptable shape and geometric errors of the produced components and, thus, to deficient products. Considering that milling operations at large aerospace structural parts take several hours and that often expensive workpiece materials (such as titanium alloys) are used, these critical deformations cause high costs in the manufacturing companies. In some cases, post-treatments such as shot peening is applied in order to reduce the influence of residual stresses. This also means a significant increase of production costs of the parts. With the aim to overcome these challenges of part deformations, in this case study an intelligent fixture was developed which detects the tendency of workpiece distortions within sequenced processing steps and which allows an active adjustment of the clamping conditions in order to compensate for the influences of residual stresses on the final shape of the part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.bct-online.de/.

References

  1. Cerutti, X., Arsene, S., Mocellin, K.: Prediction of machining quality due to the initial residual stress redistribution of aerospace structural parts made of low-density aluminium alloy rolled plates. J. Mater. Form, Int (2015). doi:10.1007/s12289-015-1254-7

    Google Scholar 

  2. Denkena, B., Nespor, D., Böß, V., Köhler, J.: Residual stresses formation after re-contouring of welded Ti-6Al-4 V parts by means of 5-axis ball nose end milling. CIRP J. Manufact. Sci. Technol. 7, 347–360 (2014)

    Article  Google Scholar 

  3. Denkena, B., Boehnke, D., de Leon, L.: Machining induced residual stress in structural aluminum parts. Prod. Eng. Res. Devel. 2, 247–253 (2008)

    Article  Google Scholar 

  4. Möhring, H.-C., Brecher, C., Abele, E., Fleischer, J., Bleicher, F.: Materials in machine tool structures. CIRP Ann. Manuf. Technol. 64(2), 725–748 (2015)

    Article  Google Scholar 

  5. Leopold, M., Hense, R., Möhring, H.C., Kersting, P.: Intelligente Werkstückspannsysteme für die verzugsfreie Fertigung dünnwandiger Aluminiumbauteile. Tagungsband 12. Magdeburger Maschinenbau-Tage, Magdeburg (2015)

    Google Scholar 

  6. Möhring, H.-C., Wiederkehr, P., Leopold, M., Nguyen, L.T., Hense, R., Siebrecht, T.: Simulation aided design of intelligent machine tool components. J. Mach. Eng. 16(3), 5–33 (2016)

    Google Scholar 

  7. Möhring, H.-C., Wiederkehr, P.: Intelligent fixtures for high performance machining. Procedia CIRP 46, 383–390 (2016)

    Article  Google Scholar 

  8. Möhring, H.-C., Wiederkehr, P.: Intelligent Components for Self-Optimizing Machine Tools—BASIS FOR INDUSTRIE 4.0. Wiener Produktionstechnik Kongress, Vienna, Austria (2016), 28–29 Sept 2016

    Google Scholar 

  9. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. SIGGRAPH Comput. Gr. (ACM) 20(4), 151–160 (1986)

    Article  Google Scholar 

  10. Schaefers, D.: Effiziente Stabilitätsvorhersage für Fräsprozesse durch Berechnung von Stabilitätskarten für unterschiedliche Eingriffssituationen, Master thesis (2014)

    Google Scholar 

  11. Coffignal, G., Lorong, P., Planchat, J., Yaqub, S., Larue, A.: Virtual machining: a general approach to deal with flexible workpieces. In: Proceedings of the 10th International Workshop on Modeling of Machining Operations. University of Calabria (Italy) (2007)

    Google Scholar 

  12. Denkena, B., Schmidt, C.: Experimental investigation and simulation of machining thin-walled workpieces. Prod. Eng. Res. Devel. 1(4), 343–350 (2007)

    Article  Google Scholar 

  13. Kersting, P., Odendahl, S.: Capabilities of a process simulation for the analysis of five-axis milling processes in the aerospace industry. In: Proceedings of the 18th International Seminar on High Technology. Piracicaba, Brazil (2013)

    Google Scholar 

  14. Siebrecht, T., Odendahl, S., Hense, R., Kersting, P.: Interpolation method for the oscillator-based modeling of workpiece vibrations. In: Proceedings of the 3rd International Conference on Virtual Machining Process Technology, Calgary (2014)

    Google Scholar 

  15. Hense, R., Siebrecht, T., Wiederkehr, P.: Simulation of workpiece vibrations in spindle direction during milling. Appl. Mechan. Mater. (2016)

    Google Scholar 

  16. Wiederkehr, P., Siebrecht, T.: Virtual machining: capabilities and challenges of process simulations in the aerospace industry. Proc. Manuf. 6, 80–87 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Christian Möhring .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Möhring, HC., Wiederkehr, P., Leopold, M., Hense, R., Hannesen, F. (2018). Case Study 2.1: Detection and Compensation of Workpiece Distortions During Machining of Slender and Thin-Walled Aerospace Parts. In: Intelligent Fixtures for the Manufacturing of Low Rigidity Components. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45291-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45291-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45290-6

  • Online ISBN: 978-3-319-45291-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics