Skip to main content

Vectors

  • Chapter
  • First Online:
Algebra I
  • 5140 Accesses

Abstract

In this section we continue to use the notation of Chaps. 3–5 and write K for an arbitrary commutative ring with unit and \(\mathbb{k}\) for an arbitrary field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Or K- linear, if the precise reference on the ring of scalars is important.

  2. 2.

    See Sect. 2.6 on p. 31.

  3. 3.

    Also collinear or linearly related.

  4. 4.

    Or linearly generates.

  5. 5.

    See Example 6.3 on p. 124.

  6. 6.

    More scientifically, we could say that K n is a direct product of n copies of the abelian group K equipped with componentwise multiplication by elements λ ∈ K.

  7. 7.

    To save space, we shall usually write them in rows. However, when the column notation becomes more convenient, we shall use it as well.

  8. 8.

    See Sect. 6.2.4 on p. 134.

  9. 9.

    Since if v 1 = 0, for instance, then we can take λ 1 = 1 and all the other λ i  = 0.

  10. 10.

    See Sect. 6.1.3 on p. 125.

  11. 11.

    See formula (6.14) on p. 128.

  12. 12.

    See Definition 1.2 on p. 16.

  13. 13.

    It asserts that if there are injective maps of sets AB and BA, then there is a bijection \(A\stackrel{\sim }{\longrightarrow }B\).

  14. 14.

    See Sect. 6.1.2 on p. 124.

  15. 15.

    See Example 6.6 on p. 128.

  16. 16.

    See Sect. 2.5 on p. 30.

  17. 17.

    Compare with Example 6.10 on p. 130.

  18. 18.

    Also called a parallel displacement .

  19. 19.

    See Sect. 1.3.4 on p. 12.

  20. 20.

    Or center of gravity.

  21. 21.

    Each pair of coinciding points p i  = q j appears in the total collection with weight λ i +μ j .

  22. 22.

    Each collection contains k vectors and is obtained by removing either the vector e +2 or the vector e +1 from the collection e 1, e 2, , e k+1 of k + 1 vectors.

  23. 23.

    See Sect. 5.2 on p. 106.

  24. 24.

    By definition, the total degree of a monomial \(x_{1}^{\alpha _{1}}x_{2}^{\alpha _{2}}\,\cdots \,x_{m}^{\alpha _{m}}\) is equal to α 1 +α 2 + ⋯ +α m . The total degree of a polynomial f is defined as the maximal total degree of the monomials in F.

  25. 25.

    A polynomial f(x 1, x 2, , x m ) is symmetric if \(f(x_{g_{1}},x_{g_{2}},\ldots,x_{g_{m}}) = f(x_{1},x_{2},\ldots,x_{m})\) for every permutation g = (g 1, g 2, , g m ) ∈ S m . For example, the polynomial (x 1x 2)2(x 1x 3)2(x 2x 3)2 is symmetric, whereas the polynomial (x 1x 2)(x 1x 3)(x 2x 3) is not.

  26. 26.

    That is, such that F 2 = F but F ≠ 0 and F ≠ Id V .

  27. 27.

    That is, such that F 2 = Id V but F ≠ Id V .

  28. 28.

    We say that a point c divides the segment [a, b] in the ratio α: β if \(\beta \cdot \overrightarrow{ca} +\alpha \cdot \overrightarrow{cb} = 0\).

  29. 29.

    A point is the midpoint of a segment if that point divides the segment in the ratio 1: 1.

  30. 30.

    A homothety with center \(c \in \mathbb{A}\) and ratio \(\lambda \in \mathbb{k}\) is a map \(\gamma _{c,\lambda }: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}\), \(p\mapsto c +\lambda \overrightarrow{ cp}\).

References

  1. Bernoulli, J.: Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis. Basileae, impensis Thurnisiorum, fratrum (1713).

    Google Scholar 

  2. Borevich, Z. I., Shafarevich, I. R.: Number Theory. Academic Press, New York (1966).

    Google Scholar 

  3. Danilov, V. I., Shokurov, V. V.: “Algebraic Curves, Algebraic Manifolds and Schemes.” In Encyclopedia of Mathematical Sciences. Springer, Heidelberg (1994).

    Google Scholar 

  4. Francis, G. K.: A Topological Picturebook. Springer, Heidelberg (1987).

    Google Scholar 

  5. Gorenstein, D., Lyons, R. Solomon, R.: The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs 40, vols. 1–6. AMS Providence, R.I. (1994–2005).

    Google Scholar 

  6. Humphreys, J. E.: Linear Algebraic Groups. Springer, Heidelberg (1975).

    Google Scholar 

  7. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, Heidelberg (1990).

    Google Scholar 

  8. Mumford, D.: Tata Lectures on Theta I. Progress in Math, vol. 23, Birkhäuser (1983).

    Google Scholar 

  9. Serre, J.-P.: Lie Groups and Lie Algebras: 1964 Lectures Given at Harvard University. Lecture Notes in Mathematics series 2, vol. 1500, Springer (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Gorodentsev, A.L. (2016). Vectors. In: Algebra I. Springer, Cham. https://doi.org/10.1007/978-3-319-45285-2_6

Download citation

Publish with us

Policies and ethics