Skip to main content

Elementary Functions and Power Series Expansions

  • Chapter
  • First Online:
Algebra I
  • 5173 Accesses

Abstract

In this chapter as in Chap. 3, we write K for an arbitrary commutative ring with unit and \(\mathbb{k}\) for an arbitrary field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Example 1.5 on p. 9 and Example 2.2 on p. 20.

  2. 2.

    By definition, we put \(q^{0}\stackrel{\text{def}}{=}1\).

  3. 3.

    See Sect. 2.8 on p. 35.

  4. 4.

    It will be defined explicitly in Sect. 4.3 on p. 82.

  5. 5.

    Such a factorization is always possible (at least in theory) over an algebraically closed field \(\mathbb{k}\) (see Sect. 3.4.3 on p. 55).

  6. 6.

    See formula (4.8) on p. 79.

  7. 7.

    Do not worry if you are not conversant with some of them. We will deduce them all soon.

  8. 8.

    Jacob Bernoulli (1654–1705) did this job in about seven minutes having just pen and paper, as he wrote (not without some pride) in his Ars Conjectandi, published posthumously in 1713 (see [Be]).

  9. 9.

    To begin with, I recommend Chapter 15 of the book A Classical Introduction to Modern Number Theory, by K. Ireland and M. Rosen [IR] and Section V.8 in the book Number Theory by Z. I. Borevich and I. R. Shafarevich [BS]. At http://www.bernoulli.org/ you may find a fast computer program that evaluates B 2k as rational simplified fractions.

  10. 10.

    Compare with the proof of Proposition 4.1 on p. 76.

  11. 11.

    Here we use that n = 1 + ⋯ + 1 ≠ 0 in \(\mathbb{k}\).

  12. 12.

    Here we use again that \(\mathop{\mathrm{char}}\nolimits \mathbb{k} = 0\).

  13. 13.

    Note that the exponent of x grows along the horizontal axis.

  14. 14.

    But not all, in general.

  15. 15.

    Note that this gives another proof of Lemma 4.5.

  16. 16.

    See Proposition 4.1 on p. 76.

  17. 17.

    That is, consisting of n cells; the number p(n) is also called the nth partition number; see Example 1.3 on p. 6.

  18. 18.

    Compare with Problem 3.12 on p. 67.

  19. 19.

    Compare with Example 4.7 on p. 89.

  20. 20.

    The map \(F: \mathbb{Q}[t] \rightarrow \mathbb{Q}[t]\) is linear if for all \(\alpha,\beta \in \mathbb{Q}\) and all \(f,g \in \mathbb{Q}[t]\), the equality F(α ⋅ f +β ⋅ g) = α F( f) +β F(g) holds. For example, all the maps \(D = \frac{d} {dt}\), D k, \(\Phi (D)\) for all \(\Phi \in \mathbb{Q}[\!\![ x]\!\!] \), ∇, ∇k, and \(\Phi (\nabla )\) are linear.

References

  1. Bernoulli, J.: Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis. Basileae, impensis Thurnisiorum, fratrum (1713).

    Google Scholar 

  2. Borevich, Z. I., Shafarevich, I. R.: Number Theory. Academic Press, New York (1966).

    Google Scholar 

  3. Danilov, V. I., Shokurov, V. V.: “Algebraic Curves, Algebraic Manifolds and Schemes.” In Encyclopedia of Mathematical Sciences. Springer, Heidelberg (1994).

    Google Scholar 

  4. Francis, G. K.: A Topological Picturebook. Springer, Heidelberg (1987).

    Google Scholar 

  5. Gorenstein, D., Lyons, R. Solomon, R.: The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs 40, vols. 1–6. AMS Providence, R.I. (1994–2005).

    Google Scholar 

  6. Humphreys, J. E.: Linear Algebraic Groups. Springer, Heidelberg (1975).

    Google Scholar 

  7. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, Heidelberg (1990).

    Google Scholar 

  8. Mumford, D.: Tata Lectures on Theta I. Progress in Math, vol. 23, Birkhäuser (1983).

    Google Scholar 

  9. Serre, J.-P.: Lie Groups and Lie Algebras: 1964 Lectures Given at Harvard University. Lecture Notes in Mathematics series 2, vol. 1500, Springer (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Gorodentsev, A.L. (2016). Elementary Functions and Power Series Expansions. In: Algebra I. Springer, Cham. https://doi.org/10.1007/978-3-319-45285-2_4

Download citation

Publish with us

Policies and ethics