Skip to main content

Hermitian Spaces

  • Chapter
  • First Online:
Algebra I
  • 5175 Accesses

Abstract

Recall that a vector space W over the field \(\mathbb{C}\) is called Hermitian if for any two vectors u, w ∈ W, the \(\mathbb{R}\)-bilinear Hermitian inner product \((u,w) \in \mathbb{C}\) is defined such that

$$\displaystyle{(u,w) = \overline{(w,u)}\, ,\quad (zu,w) = z\,(u,w) = (u,\overline{z}w)\, ,\quad \text{and}\quad (w,w) > 0\text{ for all }w\neq 0\,.}$$

It provides every vector w ∈ W with a Hermitian norm \(\Vert w\Vert \stackrel{\text{def}}{=}\sqrt{(w, w)} \in \mathbb{R}_{\geqslant 0}\). Since

$$\displaystyle\begin{array}{rcl} (u + w,u + w)& =& \Vert u\Vert ^{2} +\Vert w\Vert ^{2} + 2\,\mathop{\mathrm{Re}}\nolimits (u,w), {}\\ (u + iw,u + iw)& =& \Vert u\Vert ^{2} +\Vert w\Vert ^{2} - 2i\,\mathop{\mathrm{Im}}\nolimits (u,w)\, , {}\\ \end{array}$$

the Hermitian inner product is uniquely recovered from the norm function and the multiplication-by-i operator as

$$\displaystyle{ 2(w_{1},w_{2}) =\Vert w_{1} + w_{2}\Vert ^{2} -\Vert w_{ 1} + iw_{2}\Vert ^{2}\,. }$$

Note that this agrees with the general ideology of Kähler triples from Sect. 18.5.2 on p. 471.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Definition 18.1 on p. 469.

  2. 2.

    Or just length of the vector w; we use the double vertical bar notation to prevent confusion with the absolute value | z | of a complex number.

  3. 3.

    See Example 18.2 on p. 466.

  4. 4.

    See Proposition 10.1 on p. 231.

  5. 5.

    That is, with Gramian G e  = E.

  6. 6.

    Recall that the jth column of C ue is formed by the coefficients of the linear expansion of the vector e j in terms of the vectors u.

  7. 7.

    Or a Hermitian isometry.

  8. 8.

    It takes a \(\mathbb{C}\)-linear form \(F: W^{{\ast}}\rightarrow \mathbb{C}\) to the composition \(F \circ h: W \rightarrow \mathbb{C}\) and also is \(\mathbb{C}\)- antilinear.

  9. 9.

    Or just the orthogonal.

  10. 10.

    Taking into account that \(\overline{G}_{\boldsymbol{u}} = G_{\boldsymbol{u}}^{t}\) and \(\overline{G}_{\boldsymbol{w}} = G_{\boldsymbol{w}}^{t}\).

  11. 11.

    See Sect. 18.3 on p. 411.

  12. 12.

    Or Hermitian.

  13. 13.

    Or anti-Hermitian.

  14. 14.

    That is, over the field \(\mathbb{R}\).

  15. 15.

    See Sect. 16.5.3 on p. 411.

  16. 16.

    Compare with Problem 18.3 on p. 478.

  17. 17.

    Equivalently, we could say that each \(\lambda \in \mathop{\mathrm{Spec}}\nolimits F\) appears on the diagonal exactly dimW λ times, where W λ  ⊂ W is the λ- eigenspace of F.

  18. 18.

    See formula (18.10) on p. 464.

  19. 19.

    Which coincides with the pole of the infinite prime and the unique center of symmetry for the quadric.

  20. 20.

    See Sect. 17.5.3 on p. 448.

  21. 21.

    That is, the locus of poles for all hyperplanes passing through L, or equivalently, the intersection of the polar hyperplanes of all points of L.

  22. 22.

    Such bases may be different for FF and F F in general.

  23. 23.

    See Sect. 15.4 on p. 379.

  24. 24.

    Counting multiplicities.

  25. 25.

    It is known as the Campbell–Hausdorf series and can be found in every solid textbook on Lie algebras, e.g., Lie Groups and Lie Algebras: 1964 Lectures Given at Harvard University, by J.-P. Serre [Se].

  26. 26.

    See Sect. 10.2 on p. 233.

  27. 27.

    See formula (18.14) on p. 470.

  28. 28.

    Of course, F and ∥ w ∥ should be replaced everywhere by F and | w | .

  29. 29.

    See Proposition 15.2 on p. 368.

References

  1. Bernoulli, J.: Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis. Basileae, impensis Thurnisiorum, fratrum (1713).

    Google Scholar 

  2. Borevich, Z. I., Shafarevich, I. R.: Number Theory. Academic Press, New York (1966).

    Google Scholar 

  3. Danilov, V. I., Shokurov, V. V.: “Algebraic Curves, Algebraic Manifolds and Schemes.” In Encyclopedia of Mathematical Sciences. Springer, Heidelberg (1994).

    Google Scholar 

  4. Francis, G. K.: A Topological Picturebook. Springer, Heidelberg (1987).

    Google Scholar 

  5. Gorenstein, D., Lyons, R. Solomon, R.: The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs 40, vols. 1–6. AMS Providence, R.I. (1994–2005).

    Google Scholar 

  6. Humphreys, J. E.: Linear Algebraic Groups. Springer, Heidelberg (1975).

    Google Scholar 

  7. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, Heidelberg (1990).

    Google Scholar 

  8. Mumford, D.: Tata Lectures on Theta I. Progress in Math, vol. 23, Birkhäuser (1983).

    Google Scholar 

  9. Serre, J.-P.: Lie Groups and Lie Algebras: 1964 Lectures Given at Harvard University. Lecture Notes in Mathematics series 2, vol. 1500, Springer (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Gorodentsev, A.L. (2016). Hermitian Spaces. In: Algebra I. Springer, Cham. https://doi.org/10.1007/978-3-319-45285-2_19

Download citation

Publish with us

Policies and ethics