Skip to main content

Real Versus Complex

  • Chapter
  • First Online:
Algebra I
  • 5133 Accesses

Abstract

Let W be a vector space of dimension n over the complex number field \(\mathbb{C}\). Then W can be considered a vector space over the real subfield \(\mathbb{R} \subset \mathbb{C}\) as well. The resulting vector space over \(\mathbb{R}\) is denoted by \(W_{\mathbb{R}}\) and called the realification of the complex vector space W. For every basis e 1, e 2, , e n of W over \(\mathbb{C}\), the vectors e 1, e 2, , e n , ie 1, ie 2, , ie n form a basis of \(W_{\mathbb{R}}\) over \(\mathbb{R}\), because for every w ∈ W, the uniqueness of the expansion

$$\displaystyle{w =\sum (x_{\nu } + i\,y_{\nu }) \cdot e_{\nu }\, ,\;\text{where}\;(x_{\nu } + i\,y_{\nu }) \in \mathbb{C}\, ,}$$

is equivalent to the uniqueness of the expansion

$$\displaystyle{w =\sum x_{\nu } \cdot e_{\nu } +\sum y_{\nu } \cdot ie_{\nu }\, ,\;\text{where}\;x_{\nu },\,y_{\nu } \in \mathbb{R}\,.}$$

Therefore, \(\dim _{\mathbb{R}}W_{\mathbb{R}} = 2\dim _{\mathbb{C}}W\). Note that the realification of a complex vector space is always even-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See any calculus textbook.

  2. 2.

    They are called differentials of the function in question.

  3. 3.

    Or complex conjugation.

  4. 4.

    Or anti-Hermitian.

  5. 5.

    See Proposition 15.6 on p. 373.

  6. 6.

    Or conjugate symmetric.

  7. 7.

    See Sect. 16.6 on p. 411.

  8. 8.

    See Sect. 18.2.6 on p. 465.

  9. 9.

    Because \(g_{\mathbb{C}}\vert _{V } = g\) is positive anisotropic.

  10. 10.

    See Example 17.6 on p. 439.

  11. 11.

    See Sect. 18.2.6 on p. 465.

  12. 12.

    See Example 16.3 on p. 393.

  13. 13.

    For details, see Tata Lectures on Theta I, by D. Mumford [Mu] and Algebraic Curves, Algebraic Manifolds and Schemes, by V. I. Danilov, V. V. Shokurov [DS].

  14. 14.

    Note that \(F_{\mathbb{C}}\) acts on a space of twice the dimension of that on which F acts.

  15. 15.

    That is, there exists a continuous map \(\gamma: \mathfrak{H}_{n} \times [0, 1] \rightarrow \mathfrak{H}_{n}\) whose restrictions to \(\mathfrak{H}_{n} \times \{ 0\}\) and to \(\mathfrak{H}_{n} \times \{ 1\}\) are, respectively, the identity map \(\mathrm{Id}_{\mathfrak{H}_{n}}\) and a constant map that sends the whole \(\mathfrak{H}_{n}\) to some point.

References

  1. Bernoulli, J.: Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis. Basileae, impensis Thurnisiorum, fratrum (1713).

    Google Scholar 

  2. Borevich, Z. I., Shafarevich, I. R.: Number Theory. Academic Press, New York (1966).

    Google Scholar 

  3. Danilov, V. I., Shokurov, V. V.: “Algebraic Curves, Algebraic Manifolds and Schemes.” In Encyclopedia of Mathematical Sciences. Springer, Heidelberg (1994).

    Google Scholar 

  4. Francis, G. K.: A Topological Picturebook. Springer, Heidelberg (1987).

    Google Scholar 

  5. Gorenstein, D., Lyons, R. Solomon, R.: The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs 40, vols. 1–6. AMS Providence, R.I. (1994–2005).

    Google Scholar 

  6. Humphreys, J. E.: Linear Algebraic Groups. Springer, Heidelberg (1975).

    Google Scholar 

  7. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, Heidelberg (1990).

    Google Scholar 

  8. Mumford, D.: Tata Lectures on Theta I. Progress in Math, vol. 23, Birkhäuser (1983).

    Google Scholar 

  9. Serre, J.-P.: Lie Groups and Lie Algebras: 1964 Lectures Given at Harvard University. Lecture Notes in Mathematics series 2, vol. 1500, Springer (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Gorodentsev, A.L. (2016). Real Versus Complex. In: Algebra I. Springer, Cham. https://doi.org/10.1007/978-3-319-45285-2_18

Download citation

Publish with us

Policies and ethics