Skip to main content

Linear Operators

  • Chapter
  • First Online:
Algebra I

Abstract

Let \(\mathbb{k}\) be an arbitrary field, V a finite-dimensional vector space over \(\mathbb{k}\), and F: V → V a linear endomorphism of V over \(\mathbb{k}\). We call a pair (F, V ) a space with operator or just an operator over \(\mathbb{k}\). Given two spaces with operators (F 1, U 1) and (F 2, U 2), a linear map C: U 1 → U 2 is called a homomorphism of spaces with operators if F 2C = CF 1, or equivalently, if the diagram of linear maps

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Problem 7.7 on p. 168.

  2. 2.

    See Sect. 7.3 on p. 164.

  3. 3.

    See Proposition 3.8 on p. 53.

  4. 4.

    See Proposition 5.1 on p. 103.

  5. 5.

    See Sect. 14.3 on p. 351.

  6. 6.

    See Definition 14.4 on p. 345.

  7. 7.

    See Sect. 3.2 on p. 46.

  8. 8.

    See Sect. 7.3 on p. 164.

  9. 9.

    That is, the monic polynomial μ F (t) of lowest positive degree such that μ F (F) = 0 (see Sect. 8.1.3 on p. 175).

  10. 10.

    See formula (8.13) on p. 182.

  11. 11.

    Which says that χ F (F) = 0.

  12. 12.

    Or cyclic basis.

  13. 13.

    Recall that we write ν i for the length of the ith row in the Young diagram ν and write ν t for the transposed Young diagram. Thus, ν m t means the length of the mth column of ν.

  14. 14.

    Or completely reducible.

  15. 15.

    See Sect. 10.5 on p. 244.

  16. 16.

    See Sect. 10.1 on p. 237.

  17. 17.

    Counted without multiplicities.

  18. 18.

    Note that this agrees with Corollary 15.5 on p. 367.

  19. 19.

    That is, without multiple roots.

  20. 20.

    Or an idempotent operator.

  21. 21.

    See Sect. 15.2.1 on p. 367.

  22. 22.

    That is, the maximal integer m such that \((t-\lambda )^{m} \in \mathop{\mathcal{E}\ell}\nolimits (F)\) (see Sect. 15.1.5 on p. 365).

  23. 23.

    That is, power series converging everywhere in \(\mathbb{C}\).

  24. 24.

    Compare with Example 4.4 on p. 81.

  25. 25.

    See formula (15.9) on p. 375.

  26. 26.

    It is highly edifying for students to realize this program independently using the standard topologies, in which the convergence of functions means the absolute convergence over every disk in \(\mathbb{C}\), and the convergence of matrices means the convergence with respect to the distance on \(\mathrm{Mat}_{n}(\mathbb{C})\) defined by | A, B |  =  ∥ AB ∥ , where \(\Vert C\Vert \stackrel{\text{def}}{=}\max _{v\in \mathbb{C}^{n}\setminus 0}\vert Cv\vert /\vert v\vert \) and \(\vert w\vert ^{2}\stackrel{\text{def}}{=}\sum \vert z_{i}\vert ^{2}\) for \(w = (z_{1},z_{2},\ldots,z_{n}) \in \mathbb{C}^{n}\). A working test for such a realization could be a straightforward computation of \(e^{J_{n}(\lambda )}\) directly from the definitions.

  27. 27.

    See Sect. 15.2.3 on p. 370.

  28. 28.

    See Definition 15.2 on p. 379.

References

  1. Bernoulli, J.: Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis. Basileae, impensis Thurnisiorum, fratrum (1713).

    Google Scholar 

  2. Borevich, Z. I., Shafarevich, I. R.: Number Theory. Academic Press, New York (1966).

    Google Scholar 

  3. Danilov, V. I., Shokurov, V. V.: “Algebraic Curves, Algebraic Manifolds and Schemes.” In Encyclopedia of Mathematical Sciences. Springer, Heidelberg (1994).

    Google Scholar 

  4. Francis, G. K.: A Topological Picturebook. Springer, Heidelberg (1987).

    Google Scholar 

  5. Gorenstein, D., Lyons, R. Solomon, R.: The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs 40, vols. 1–6. AMS Providence, R.I. (1994–2005).

    Google Scholar 

  6. Humphreys, J. E.: Linear Algebraic Groups. Springer, Heidelberg (1975).

    Google Scholar 

  7. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, Heidelberg (1990).

    Google Scholar 

  8. Mumford, D.: Tata Lectures on Theta I. Progress in Math, vol. 23, Birkhäuser (1983).

    Google Scholar 

  9. Serre, J.-P.: Lie Groups and Lie Algebras: 1964 Lectures Given at Harvard University. Lecture Notes in Mathematics series 2, vol. 1500, Springer (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Gorodentsev, A.L. (2016). Linear Operators. In: Algebra I. Springer, Cham. https://doi.org/10.1007/978-3-319-45285-2_15

Download citation

Publish with us

Policies and ethics