Skip to main content

Modules over a Principal Ideal Domain

  • Chapter
  • First Online:
Algebra I
  • 5130 Accesses

Abstract

In this chapter, K by default means an arbitrary commutative ring with unit and \(\mathbb{k}\) means an arbitrary field. A K-module always means a unital module over K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Definition 6.2 on p. 124.

  2. 2.

    Also called a K- linear map.

  3. 3.

    See Sect. 2.6 on p. 31.

  4. 4.

    See Sect. 9.6 on p. 220.

  5. 5.

    See Sect. 8.1.3 on p. 175.

  6. 6.

    See Sect. 5.2.2 on p. 107.

  7. 7.

    See Sect. 5.3 on p. 109.

  8. 8.

    Note that d is linearly independent, because K has no zero divisors: λ d = 0  ⇒  λ = 0.

  9. 9.

    Recall that the greatest common divisor of elements in a principal ideal domain is a generator of the ideal spanned by those elements. It is unique up to multiplication by invertible elements of K (see Sect. 5.3.2 on p. 110).

  10. 10.

    Compare with Exercise 5.17 on p. 111.

  11. 11.

    Compare with Sect. 8.4 on p. 182.

  12. 12.

    See Definition 5.1 on p. 104.

  13. 13.

    Note that the same power p m can appear several times in the collection of elementary divisors if it appears in the prime factorizations of several of the f i .

  14. 14.

    See Problem 5.8 on p. 120.

  15. 15.

    That is, such that (q) ≠ (p), or equivalently, \(\mathop{\mathsf{GCD}}\nolimits (q,p) = 1\) (see Exercise 5.17 on p. 111).

  16. 16.

    Considered up to multiplication by invertible elements.

  17. 17.

    Recall that in an additive abelian group, the order of an element w is the minimal \(n \in \mathbb{N}\) such that nw = 0. If there is no such n, we set \(\mathop{\mathrm{ord}}\nolimits (w) = \infty\) (see Sect. 3.6.1 on p. 62).

  18. 18.

    Modules possessing these properties are called Noetherian (compare with Lemma 5.1 on p. 104).

  19. 19.

    See Sect. 5.1.2 on p. 104.

  20. 20.

    See 14.10 on p. 355.

  21. 21.

    See Sect. 14.1.8 on p. 343.

  22. 22.

    See Definition 14.6 on p. 355.

  23. 23.

    Compare with Problem 12.11 on p. 304.

  24. 24.

    That is, points with integer coordinates lying inside but not on the boundary of \(\Pi\), faces of \(\Pi\), and edges of Π respectively.

References

  1. Bernoulli, J.: Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis. Basileae, impensis Thurnisiorum, fratrum (1713).

    Google Scholar 

  2. Borevich, Z. I., Shafarevich, I. R.: Number Theory. Academic Press, New York (1966).

    Google Scholar 

  3. Danilov, V. I., Shokurov, V. V.: “Algebraic Curves, Algebraic Manifolds and Schemes.” In Encyclopedia of Mathematical Sciences. Springer, Heidelberg (1994).

    Google Scholar 

  4. Francis, G. K.: A Topological Picturebook. Springer, Heidelberg (1987).

    Google Scholar 

  5. Gorenstein, D., Lyons, R. Solomon, R.: The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs 40, vols. 1–6. AMS Providence, R.I. (1994–2005).

    Google Scholar 

  6. Humphreys, J. E.: Linear Algebraic Groups. Springer, Heidelberg (1975).

    Google Scholar 

  7. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, Heidelberg (1990).

    Google Scholar 

  8. Mumford, D.: Tata Lectures on Theta I. Progress in Math, vol. 23, Birkhäuser (1983).

    Google Scholar 

  9. Serre, J.-P.: Lie Groups and Lie Algebras: 1964 Lectures Given at Harvard University. Lecture Notes in Mathematics series 2, vol. 1500, Springer (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Gorodentsev, A.L. (2016). Modules over a Principal Ideal Domain. In: Algebra I. Springer, Cham. https://doi.org/10.1007/978-3-319-45285-2_14

Download citation

Publish with us

Policies and ethics