Skip to main content

\(\boldsymbol{(s,p)}\)-Valent Functions

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2169))

Abstract

We introduce the notion of \((\mathcal{F},p)\)-valent functions. We concentrate in our investigation on the case, where \(\mathcal{F}\) is the class of polynomials of degree at most s. These functions, which we call (s, p)-valent functions, provide a natural generalization of p-valent functions (see Hayman, Multivalent Functions, 2nd ed, Cambridge Tracts in Mathematics, vol 110, 1994). We provide a rather accurate characterizing of (s, p)-valent functions in terms of their Taylor coefficients, through “Taylor domination”, and through linear non-stationary recurrences with uniformly bounded coefficients. We prove a “distortion theorem” for such functions, comparing them with polynomials sharing their zeroes, and obtain an essentially sharp Remez-type inequality in the spirit of Yomdin (Isr J Math 186:45–60, 2011) for complex polynomials of one variable. Finally, based on these results, we present a Remez-type inequality for (s, p)-valent functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Batenkov, Y. Yomdin, Taylor domination, Turán lemma, and Poincaré-Perron sequences, in Nonlinear Analysis and Optimization. Contemporary Mathematics, vol. 659 (American Mathematical Society, Providence, 2016), pp. 1–15

    Google Scholar 

  2. L. Bieberbach, Analytische Fortsetzung. Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 3 (Springer, Berlin/Göttingen/Heidelberg, 1955) (Russian)

    Google Scholar 

  3. M. Biernacki, Sur les fonctions multivalentes d’ordre p. C. R. Acad. Sci. Paris 203, 449–451 (1936)

    MATH  Google Scholar 

  4. G. Binyamini, D. Novikov, S. Yakovenko, Quasialgebraic Functions. Algebraic Methods in Dynamical Systems, vol. 94. Polish Academy of Sciences, Institute of Mathematics, Warsaw (Banach Center Publications, 2011), pp. 61–81

    Google Scholar 

  5. A. Brudnyi, On covering numbers of sublevel sets of analytic functions. J. Approx. Theory 162 (1), 72–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Brudnyi, Y. Brudnyi, Remez type inequalities and Morrey-Campanato spaces on Ahlfors regular sets, in Interpolation Theory and Applications. Contemporary Mathematics, vol. 445 (American Mathematical Society, Providence, RI, 2007), pp. 19–44

    Google Scholar 

  7. H. Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications. Ann. Sci. École Norm. Sup. (3) 45, 255–346 (1928) (French)

    Google Scholar 

  8. D. Coman, E.A. Poletsky, Measures of transcendency for entire functions. Mich. Math. J. 51 (3), 575–591 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Coman, E.A. Poletsky, Transcendence measures and algebraic growth of entire functions. Invent. Math. 170 (1), 103–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Favard, Sur l’interpolation. Bull. Soc. Math. Fr. 67, 102–113 (1939) (French)

    Google Scholar 

  11. E.A. Gorin, A. Cartan’s lemma according to B. Ya. Levin with various applications. Zh. Mat. Fiz. Anal. Geom. 3 (1), 13–38 (2007) (Russian, with English and Russian summaries)

    Google Scholar 

  12. W.K. Hayman, Multivalent Functions, 2nd edn., Cambridge Tracts in Mathematics, vol. 110 (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  13. S. Marmi, D. Sauzin, A quasianalyticity property for monogenic solutions of small divisor problems. Bull. Braz. Math. Soc. (N.S.) 42 (1), 45–74 (2011)

    Google Scholar 

  14. E.J. Remez, Sur une propriété des polynômes de Tchebycheff. Commun. Inst. Sci. Kharkov 13, 93–95 (1936)

    Google Scholar 

  15. N. Roytwarf, Y. Yomdin, Bernstein classes. Ann. Inst. Fourier (Grenoble) 47 (3), 825–858 (1997) (English, with English and French summaries)

    Google Scholar 

  16. R.V. Sibilev, A uniqueness theorem for Wolff-Denjoy series. Algebra i Analiz 7 (1), 170–199 (1995) (Russian, with Russian summary); English transl., St. Petersburg Math. J. 7 (1), 145–168 (1996)

    Google Scholar 

  17. Y. Yomdin, emphAnalytic reparametrization of semi-algebraic sets. J. Complex. 24 (1), 54–76 (2008)

    Google Scholar 

  18. Y. Yomdin, Remez-type inequality for discrete sets. Isr. J. Math. 186, 45–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions. Indiana Univ. Math. J. 50 (1), 671–703 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Zeriahi, A minimum principle for plurisubharmonic functions. Indiana Univ. Math. J. 56 (6), 2671–2696 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Friedland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Friedland, O., Yomdin, Y. (2017). \(\boldsymbol{(s,p)}\)-Valent Functions. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2169. Springer, Cham. https://doi.org/10.1007/978-3-319-45282-1_8

Download citation

Publish with us

Policies and ethics