Skip to main content

Sharp Poincaré-Type Inequality for the Gaussian Measure on the Boundary of Convex Sets

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2169))

Abstract

A sharp Poincaré-type inequality is derived for the restriction of the Gaussian measure on the boundary of a convex set. In particular, it implies a Gaussian mean-curvature inequality and a Gaussian iso-second-variation inequality. The new inequality is nothing but an infinitesimal equivalent form of Ehrhard’s inequality for the Gaussian measure. While Ehrhard’s inequality does not extend to general CD(1, ) measures, we formulate a sufficient condition for the validity of Ehrhard-type inequalities for general measures on \(\mathbb{R}^{n}\) via a certain property of an associated Neumann-to-Dirichlet operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, in Lectures on Probability Theory (Saint-Flour, 1992). Lecture Notes in Mathematics, vol. 1581 (Springer, Berlin, 1994), pp. 1–114

    Google Scholar 

  2. D. Bakry, M. Émery, Diffusions hypercontractives, in Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Mathematics, vol. 1123 (Springer, Berlin, 1985), pp. 177–206

    Google Scholar 

  3. V.I. Bogachev, Gaussian Measures. Mathematical Surveys and Monographs, vol. 62 (American Mathematical Society, Providence, RI, 1998)

    Google Scholar 

  4. Ch. Borell, The Brunn–Minkowski inequality in Gauss spaces. Invent. Math. 30, 207–216 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ch. Borell, Convex set functions in d-space. Period. Math. Hung. 6 (2), 111–136 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Borell, The Ehrhard inequality. C. R. Math. Acad. Sci. Paris 337 (10), 663–666 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Borell, Minkowski sums and Brownian exit times. Ann. Fac. Sci. Toulouse Math. (6) 16 (1), 37–47 (2007)

    Google Scholar 

  8. H.J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (4), 366–389 (1976)

    Article  MATH  Google Scholar 

  9. A. Colesanti, From the Brunn-Minkowski inequality to a class of Poincaré-type inequalities. Commun. Contemp. Math. 10 (5), 765–772 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Colesanti, E. Saorín Gómez, Functional inequalities derived from the Brunn-Minkowski inequalities for quermassintegrals. J. Convex Anal. 17 (1), 35–49 (2010)

    MathSciNet  MATH  Google Scholar 

  11. A. Ehrhard, Symétrisation dans l’espace de Gauss. Math. Scand. 53 (2), 281–301 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Eldan, A two-sided estimate for the Gaussian noise stability deficit. Invent. Math. 201 (2), 561–624 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. R.J. Gardner, The Brunn-Minkowski inequality. Bull. Am. Math. Soc. (N.S.) 39 (3), 355–405 (2002)

    Google Scholar 

  14. A.V. Kolesnikov, E. Milman, Brascamp–Lieb type inequalities on weighted Riemannian manifolds with boundary. J. Geom. Anal. (2017, to appear). arxiv.org/abs/1310.2526

  15. A.V. Kolesnikov, E. Milman, Poincaré and Brunn–Minkowski inequalities on the boundary of weighted Riemannian manifolds. Submitted, arxiv.org/abs/1310.2526

    Google Scholar 

  16. R. Latała, A note on the Ehrhard inequality. Stud. Math. 118 (2), 169–174 (1996)

    MathSciNet  MATH  Google Scholar 

  17. M. Ledoux, The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89 (American Mathematical Society, Providence, RI, 2001)

    Google Scholar 

  18. E. Mossel, J. Neeman, Robust dimension free isoperimetry in Gaussian space. Ann. Probab. 43 (3), 971–991 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 44 (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  20. V.N. Sudakov, B.S. Cirel’son [Tsirelson], Extremal properties of half-spaces for spherically invariant measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41, 14–24, 165 (1974). Problems in the theory of probability distributions, II

    Google Scholar 

Download references

Acknowledgements

The first named author was supported by the RFBR project 17-01-00662, and the DFG project RO 1195/12-1. The second named author is supported by BSF (grant no. 2010288) and Marie-Curie Actions (grant no. PCIG10-GA-2011-304066). The article was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2017–2018 (grant no. 17-01-0102) and by the Russian Academic Excellence Project “5-100”. The research leading to these results is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 637851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Milman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kolesnikov, A.V., Milman, E. (2017). Sharp Poincaré-Type Inequality for the Gaussian Measure on the Boundary of Convex Sets. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2169. Springer, Cham. https://doi.org/10.1007/978-3-319-45282-1_15

Download citation

Publish with us

Policies and ethics