Skip to main content

Literature Review

  • Chapter
  • First Online:
Biodiesel Production with Green Technologies
  • 903 Accesses

Abstract

The expansive use of diesel fuel worldwide and the rapid depletion of crude oil reserves have prompted keen interest and exhaustive research into suitable alternative fuels. Biomass sources, particularly vegetal oils, have attracted much attention in recent years because of their wide availability and ease of renewal. Alternative fuels for diesel engines are becoming increasingly important because of the diminishing petroleum reserves. In addition, environmental pollution, through the emission of carbon monoxide, sulfur dioxide, hydrocarbons, and hazardous particulates, and the threat of climatic change associated with green house effect are the most serious problems across the world (Amigun, Sigamoney, & Blottnitz, 2008). Therefore, the demand for clean, alternative fuel has been growing rapidly. Among the many possible sources, biodiesel attracts the most attention as a promising substitute for conventional diesel fuel. Biodiesel refers to the lower alkyl esters of long chain fatty acids, which are synthesized either by transesterification with lower alcohols or by esterification of fatty acids in the presence or absence of a catalyst (Freedman & Pryde, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu, F. R., Alves, M. B., Macedo, C. C. S., Zara, L. F., & Suarez, P. A. Z. (2005). New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterification reaction. Journal of Molecular Catalysis A: Chemical, 227, 263–267.

    Article  Google Scholar 

  • Abreu, F. R., Lima, D. G., Hamu, E. H., Einloft, S., Rubim, J. C., & Suarez, P. A. Z. (2003). New metal catalysts for soybean oil transesterification. Journal of the American Chemical Society, 80, 601–604.

    Google Scholar 

  • Akoh, C. C., Chang, S. W., Lee, G. C., Shaw, J. F., Akoh, C. C., Chang, S. W., et al. (2007). Enzymatic Approach to Biodiesel Production. Journal of Agricultural and Food Chemistry, 55, 8995–9005.

    Article  Google Scholar 

  • Albuquerque, M. C. G., Gonzalez, J. S., Robles, J. M. M., Tost, R. M., Castellon, E. R., Lopez, A. J., et al. (2008). MgM (M = Al and Ca) oxides as basic catalysts in transesterification processes. Applied Catalysis A: General, 347, 162–168.

    Article  Google Scholar 

  • Almeida, R. M. D., Noda, L. K., Goncalves, N. S., Meneghetti, S. M. P., & Meneghetti, M. R. (2008). Transesterification reaction of vegetable oils, using superacid sulfated TiO2–base catalysts. Applied Catalysis A: General, 347, 100–105.

    Article  Google Scholar 

  • Alonso, R. D., Mariscal, M., Tost, R. M., Poves, M. D. Z., & Granados, M. L. (2007). Potassium leaching during triglyceride transesterification using K/γ-Al2O3 catalysts. Catalysis Communications, 8, 2074–2080.

    Article  Google Scholar 

  • Amigun, B., Sigamoney, R., & Blottnitz, H. V. (2008). Commercialisation of biofuel industry in Africa: A review. Renewable and Sustainable Energy Reviews, 12, 690–711.

    Article  Google Scholar 

  • Antunes, W. M., Veloso, C. D. O., Assumpc, C., & Henriques, O. (2008). Transesterification of soybean oil with methanol catalyzed by basic solids. Catalysis Today, 133–135, 548–554.

    Article  Google Scholar 

  • Araujoa, L. R. R., Scofielda, C. F., Pasturaa, N. M. R., & Gonzalezb, W. A. (2006). H 3 PO 4 /Al 2 O 3 Catalysts: Characterization and Catalytic Evaluation of Oleic Acid Conversion to Biofuels and Biolubricant. Materials Research, 9, 181–184.

    Article  Google Scholar 

  • Ardizzone, S., Bianchi, C. L., Ragaini, V., & Vercelli, B. (1999). SO4–ZrO2 catalysts for the esterification of benzoic acid to methylbenzoate. Catalysis Letters, 62, 59–65.

    Article  Google Scholar 

  • Arzamendi, G., Campoa, I., Arguinarena, E., Sanchez, M., Montes, M., & Gandıa, L. M. (2007). Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chemical Engineering Journal, 134, 123–130.

    Article  Google Scholar 

  • Backov, R. (2006). Combining soft matter and soft chemistry: integrative chemistry towards designing novel and complex multiscale architectures. Soft Materials, 2, 452–464.

    Article  Google Scholar 

  • Baronetti, G., Padro, C., Scelza, O., & Castro, A. (1993). Structure and reactivity of alkali doped calcium oxide catalysts for oxidative coupling of methane. Applied Catalysis A: General, 101, 167–183.

    Article  Google Scholar 

  • Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., et al. (1992). A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society, 114, 10834–10843.

    Article  Google Scholar 

  • Benjapornkulaphong, S., Ngamcharussrivichai, C., & Bunyakiat, K. (2009). Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chemical Engineering Journal, 145, 468–474.

    Article  Google Scholar 

  • Bernardes, O. L., Bevilaqua, J. V., Leal, M. C. M. R., Freire, D. M. G., & Langone, M. A. P. (2007). Biodiesel fuel production by the transesterification reaction of soybean oil using immobilized lipase. Applied Biochemistry and Biotechnology, 137–140, 105–114.

    Google Scholar 

  • Bo, X., Guomin, X., Lingfeng, C., Ruiping, W., & Lijing, G. (2007). Transesterification of Palm Oil with Methanol to Biodiesel over a KF/Al2O3 Heterogeneous Base Catalyst. Energy & Fuels, 21, 3109–3112.

    Article  Google Scholar 

  • Bols, M., & Skrydstrup, T. (1995). Silicon-Tethered Reactions. Chemistry Review, 95, 1253–1277.

    Article  Google Scholar 

  • Bourikas, K., Kordulis, C., & Lycourghiotis, A. (2006). The Role of the Liquid-Solid Interface in the Preparation of Supported Catalysts. Catalysis Reviews, 48, 363–444.

    Article  Google Scholar 

  • Boyse, R. A., & Ko, E. I. (1999). Commercially available zirconia–tungstate as a benchmark catalytic material. Applied Catalysis A: General, 177, 131–137.

    Article  Google Scholar 

  • Boz, N., Degirmenbasi, N., & Kalyon, D. M. (2009). Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Applied Catalysis B: Environmental, 89, 590–596.

    Article  Google Scholar 

  • Brito, A., Arvelo, R., Borges, M. E., Garcia, F., Garcia, M. T., Diaz, M. C., et al. (2007). Reuse of fried oil to obtain biodiesel: zeolite Y as catalyst. International Journal of Chemical Reactor Engineering, 5, 1–13.

    Article  Google Scholar 

  • Buchmeiser, M. R. (2001). New synthetic ways for the preparation of high-performance liquid chromatography supports. Journal of Chromatography. A, 918, 233–266.

    Article  Google Scholar 

  • Buelna, G., & Lin, Y. S. (1999). Sol–gel-derived mesoporous γ-alumina granules. Microporous and Mesoporous Materials, 30, 359–369.

    Article  Google Scholar 

  • Buelna, G., & Lin, Y. S. (2004). Characteristics and desulfurization-regeneration properties of sol–gel-derived copper oxide on alumina sorbents. Separation and Purification Technology, 39, 167–179.

    Article  Google Scholar 

  • Bunyakiat, K., Makmee, S., Sawangkeaw, R., & Ngamprasertsith, S. (2006). Continuous Production of Biodiesel via Transesterification from Vegetable Oils in Supercritical Methanol. Energy & Fuels, 20, 812–817.

    Article  Google Scholar 

  • Campanati, M., Fornasari, G., & Vaccari, A. (2003). A Fundamentals in the preparation of heterogeneous catalysts. Catalysis Today, 77, 299–314.

    Article  Google Scholar 

  • Canakci, M., & Gerpen, J. V. (1999). Biodiesel Production via Acid Catalysis. Transactions of ASAE, 42, 1203–1210.

    Article  Google Scholar 

  • Centi, G., & Perathoner, S. (2003a). Integrated design for solid catalysts in multiphase reactions. CATTECH, 7, 78–89.

    Article  Google Scholar 

  • Centi, G., & Perathoner, S. (2003b). Novel catalyst design for multiphase reactions. Catalysis Today, 3, 79–80.

    Google Scholar 

  • Cervero, J. M., Coca, J., & Luque, S. (2008). Production of biodiesel from vegetable oils. Grasas Y Aceites. International Journal of Fats and Oils, 59, 76–83.

    Google Scholar 

  • Chan, E. S., Lee, B. B., Ravindra, P., & Poncelet, D. (2009). Shape and size analysis of ca-alginate particles produced through extrusion-dripping method. Journal of Colloid and Interface Science, 338, 63–72.

    Article  Google Scholar 

  • Cheng, L. J., Lan, X., Feng, X., Zhan-Wen, W., & Fei, W. (2006). Effect of hydrothermal treatment on the acidity distribution of γ-Al2O3 support. Applied Surface Science, 253, 766–770.

    Article  Google Scholar 

  • Chorkendorff, I., & Niemantsverdriet, J. W. (2003). Concepts of Modern Catalysis and Kinetics. Germany: Wiley-VCH.

    Book  Google Scholar 

  • Chuah, G. K., Jaenicke, S., & Xu, T. H. (2000). The effect of digestion on the surface area and porosity of alumina. Microporous and Mesoporous Materials, 37, 345–353.

    Article  Google Scholar 

  • Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemistry Review, 95, 559–614.

    Article  Google Scholar 

  • Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemistry Review, 97, 2373–2420.

    Article  Google Scholar 

  • Corma, A., Diaz-Cabanas, M. J., Jorda, J. L., Martinez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443, 842–845.

    Article  Google Scholar 

  • Cosimo, J. I. D., Dıez, V. K., Xu, M., Iglesi, E., & Apesteguı, C. R. (1998). Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides. Journal of Catalysis, 178, 499–510.

    Article  Google Scholar 

  • Crabba, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., & Ishizaki, A. (2001). Biodiesel Production from Crude Palm Oil and Evaluation of Butanol Extraction and Fuel Properties. Process Biochemistry, 37, 67–71.

    Google Scholar 

  • Cristiani, C., Valentini, M., Merazzi, M., Neglia, S., & Forzatti, P. (2005). Effect of ageing time on chemical and rheological evolution in γ-Al2O3 slurries for dip-coating. Catalysis Today, 105, 492–498.

    Article  Google Scholar 

  • Demirbas, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43, 2349–2356.

    Article  Google Scholar 

  • Demirbas, A. (2003). Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management, 44, 2093–2109.

    Article  Google Scholar 

  • Demirbas, A. (2006). Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management, 47, 2271–2282.

    Article  Google Scholar 

  • Demirbas, A. (2007). Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Conversion and Management, 48, 937–941.

    Article  Google Scholar 

  • Demirbas, A. (2008). Studies on cottonseed oil biodiesel prepared in noncatalytic SCF conditions. Bioresource Technology, 99, 1125–1130.

    Article  Google Scholar 

  • Demirbas, A. (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50, 923–927.

    Article  Google Scholar 

  • Di, Y., Yu, Y., Sun, Y., Yang, X., Lin, S., Zhang, M., et al. (2003). Synthesis, characterization, and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors. Microporous and Mesoporous Materials, 62, 221–228.

    Article  Google Scholar 

  • Dıaz, I., Mohino, F., Pariente, J. P., & Sastre, E. (2003). Synthesis of MCM-41 materials functionalised with dialkylsilane groups and their catalytic activity in the esterification of glycerol with fatty acids. Applied Catalysis A: General, 242, 161–169.

    Article  Google Scholar 

  • Dıaz, I., Mohino, F., Perez-Pariente, J., & Satre, E. (2001). Synthesis, characterization and catalytic activity of MCM-41-type mesoporous silicas functionalized with sulfonic acid. Applied Catalysis A: General, 205, 19–30.

    Article  Google Scholar 

  • Dmytryshyn, S. L., Dalai, A. K., Chaudhari, S. T., Mishra, H. K., & Reaney, M. J. (2004). Synthesis and characterization of vegetable oil derived esters: evaluation for their diesel additive properties. Bioresource Technology, 92, 55–64.

    Article  Google Scholar 

  • Donaldson, K., Li, X. Y., & MacNee, W. (1998). Ultrafine (nanometre) particle mediated lung injury. Journal of Aerosol Science, 29, 553–560.

    Article  Google Scholar 

  • Encinar, J. M., Gonzalez, J. F., & Rodriguez-Reinares, A. (2005). Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. Industrial and Engineering Chemistry Research, 44, 5491–5499.

    Article  Google Scholar 

  • Ensoz, S., Angın, D., & Yorgun, S. (2000). Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass and Bioenergy, 19, 271–279.

    Article  Google Scholar 

  • Fauchadour, D., Kolenda, F., Rouleau, L., Barre, L., & Normand, L. (2000). Peptization mechanisms of boehmite used as precursors for catalysts. Studies in Surface Science and Catalysis, 143, 453–461.

    Article  Google Scholar 

  • Feng, Y., He, B., Cao, Y., Li, J., Liu, M., & Yan, F. (2010). Biodiesel production using cation-exchange resin as heterogeneous catalyst. Bioresource Technology, 101, 1518–1521.

    Article  Google Scholar 

  • Ferretti, C. A., Olcese, R. N., Apesteguıa, C. R., & Di Cosimo, J. I. (2009). Heterogeneously Catalyzed Glycerolysis of Fatty Acid Methyl Esters: Reaction Parameter Optimization. Industrial and Engineering Chemistry Research, 48, 10387–10394.

    Article  Google Scholar 

  • Filip, V., Zajic, V., & Smidrkal, J. (1992). Methanolysis of rapeseed oil triglycerides. Revue Francaise des Corps Gras, 39, 91–94.

    Google Scholar 

  • Freedman, B., Butterfield, R. O., & Pryde, E. H. (1986). Transesterification kinetics of soybean oil. Journal of American Oil Chemistry Society, 63, 1375–1380.

    Article  Google Scholar 

  • Freedman, B., & Pryde, E. H. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists’ Society, 61, 1638–1643.

    Article  Google Scholar 

  • Freese, U., Heinrich, F., & Roessner, F. (1999). Acylation of aromatic compounds on H-Beta zeolites. Catalysis Today, 49, 237–244.

    Article  Google Scholar 

  • Furuta, S., Matsuhashi, H., & Arata, K. (2004). Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications, 5, 721–723.

    Article  Google Scholar 

  • Furuta, S., Matsuhashi, H., & Arata, K. (2006). Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor. Biomass and Bioenergy, 30, 870–873.

    Article  Google Scholar 

  • Garcia, C. M., Teixeira, S., Marciniuk, L. L., & Schuchardt, U. (2008). Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresource Technology, 99, 6608–6613.

    Article  Google Scholar 

  • Gerpen, J. V. (2005). Biodiesel processing and production. Fuel Processing Technology, 86, 1097–1107.

    Article  Google Scholar 

  • Gerpen, V. J., & Knothe, G. (2005). Basics of the Transesterification Reaction. In G. Knothe, J. V. Gerpen, & J. Krahl (Eds.), The Biodiesel Handbook (pp. 26–41). Illinois: AOCS Press. Urbana.

    Google Scholar 

  • Ghanem, A. (2003). The utility of cyclodextrins in lipase-catalyzed transesterification in organic solvents: enhanced reaction rate and enantioselectivity. Organic and Biomolecular Chemistry, 1, 1282–1291.

    Article  Google Scholar 

  • Goff, M. J., Bauer, N. S., Lopes, S., Sutterlin, W. R., & Suppes, G. J. (2004). Acid-catalyzed alcoholysis of soybean oil. Journal of American Oil Chemistry Society, 81, 415–420.

    Article  Google Scholar 

  • Granados, M. L., Alonso, D. M., Sadaba, I., & Ocon, P. (2009). Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: The case of triglycerides methanolysis using CaO. Applied Catalysis B: Environmental, 89, 265–272.

    Article  Google Scholar 

  • Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., et al. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73, 317–326.

    Article  Google Scholar 

  • Gui, M. M., Lee, K. T., & Bhatia, S. (2009). Supercritical ethanol technology for the production of biodiesel: Process optimization studies. Journal of Supercritical Fluids, 49, 286–292.

    Article  Google Scholar 

  • Gutierrez-Ortiz, J. I., Lopez-Fonseca, R., Gonzalez Ortiz de Elguea, C., Gonzalez- Marcos, M. P., & Gonzalez-Velasco, J. R. (2000). Mass transfer studies in the hydrogenation of methyl oleate over a Ni/SiO2 catalyst in the liquid phase. Reaction Kinetics and Catalysis Letters, 70, 341–348.

    Article  Google Scholar 

  • Hathaway, P. E., & Davis, M. E. (1989). Base catalysis by alkali-modified zeolites: I. Catalytic activity. Journal of Catalysis, 116, 263–278.

    Article  Google Scholar 

  • Hawash, S., Kamal, N., Zaher, F., Kenawi, O., & Diwani, G. E. (2009). Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel, 88, 579–582.

    Article  Google Scholar 

  • He, C., Baoxiang, P., Dezheng, W., & Jinfu, W. (2007). Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Frontiers of Chemical Engineering in China, 1, 11–15.

    Article  Google Scholar 

  • He, H., Sun, S., Wang, T., & Zhu, S. (2007a). Transesterification kinetics of soybean oil for production of biodiesel in supercritical methanol. Journal of American Oil Chemistry Society, 84, 399–404.

    Google Scholar 

  • He, H., Wang, T., & Zhu, S. (2007b). Continuous production of biodiesel fuel from vegetable oi using supercritical methanol process. Fuel, 86, 442–447.

    Google Scholar 

  • Ilham, Z., & Saka, S. (2009). Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method. Bioresource Technology, 100, 1793–1796.

    Article  Google Scholar 

  • Jacobson, K., Gopinath, R., Meher, L. C., & Dalai, A. K. (2008). Solid acid catalyzed biodiesel production from waste cooking oil. Applied Catalysis B: Environmental, 85, 86–91.

    Article  Google Scholar 

  • Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., & Jenvanitpanjakul, P. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal, 116, 61–66.

    Article  Google Scholar 

  • Kansedo, J., Lee, K. T., & Bhatia, S. (2009). Biodiesel production from palm oil via heterogeneous transesterification. Biomass and Bioenergy, 33, 271–276.

    Article  Google Scholar 

  • Kasim, N. S., Tsai, T. H., Gunawan, S., & Ju, Y. H. (2009). Biodiesel production from rice bran oil and supercritical methanol. Bioresource Technology, 100, 2399–2403.

    Article  Google Scholar 

  • Keyes, D. B. (1932). Esteri cation processes and equipment. Industrial and Engineering Chemistry, 24, 1096–1103.

    Article  Google Scholar 

  • Kim, H. J., Kang, B. S., Kim, M. J., Park, Y. M., Kim, D. K., Lee, J. S., et al. (2004). Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today, 93–95, 315–320.

    Article  Google Scholar 

  • Kirkland, J. J. (1963). Fibrillar boehmite-A new adsorbent for gas solid chromatography. Analytical Chemistry, 35, 1295–1297.

    Article  Google Scholar 

  • Kirkland, J. J., Truszkowski, F. A., Dilks, C. H., Jr., & Engel, G. S. (2000). High pH mobile phase effects on silica-based reversed-phase high-performance liquid chromatographic columns. Journal of Chromatography. A, 890, 3–19.

    Article  Google Scholar 

  • Kiss, A. A., Omota, F., Dimian, A. C., & Rothenberg, G. (2006). The heterogeneous advantage: biodiesel by catalytic reactive distillation. Topics in Catalysis, 40, 141–150.

    Article  Google Scholar 

  • Knothe, G., Krahl, J., & Van Gerpen, J. (Eds.). (2005). The biodiesel handbook. Champaign, IL: AOCS Press.

    Google Scholar 

  • Knothe, G., Sharp, C. A., & Ryan, T. W. (2006). Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy and Fuels, 20, 403–408.

    Article  Google Scholar 

  • Kolaczkowski, S. T., Asli, U. A., & Davidson, M. G. (2009). A new heterogeneous ZnL2 catalyst on a structured support for biodiesel production. Catalysis Today, 147, 220–224.

    Article  Google Scholar 

  • Korytkowska, A., Barszczewska-Rybarek, I., & Gibas, M. (2001). Side-reactions in the transesterification of oligoethylene glycols by methacrylates. Designed Monomers And Polymers, 4, 27–37.

    Article  Google Scholar 

  • Kotwal, M. S., Niphadkar, P. S., Deshpande, S. S., Bokade, V. V., & Joshi, P. N. (2009). Transesterification of sunflower oil catalyzed by flyash-based solid catalysts. Fuel, 88, 1773–1778.

    Article  Google Scholar 

  • Kouzu, M., Kasuno, T., Tajik, M., Sugimoto, Y., Yamanaka, S., & Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87, 2798–2806.

    Article  Google Scholar 

  • Kusdiana, D., & Saka, S. (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80, 693–698.

    Article  Google Scholar 

  • Lai, O. M., Ghazali, H. M., & Chong, C. L. (1999). Use of enzymatic transesterified palm stearin–sunflower oil blends in the preparation of table margarine formulation. Food Chemistry, 64, 83–88.

    Article  Google Scholar 

  • Lam, M. K., & Lee, K. T. (2010). Accelerating transesterification reaction with biodiesel as co-solvent: A case study for solid acid sulfated tin oxide catalyst. Fuel, 89, 3866–3870.

    Article  Google Scholar 

  • Leclercq, E., Finiels, A., & Moreau, C. (2001). Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts. Journal of American Oil Chemistry Society, 78, 1161–1165.

    Article  Google Scholar 

  • Lee, Y., Park, S. H., Lim, I. T., Han, K., & Lee, S. Y. (2000). Preparation of alkyl (R)-(2)-3- hydroxybutyrate by acidic alcoholysis of poly-(R)-(2)-3-hydroxybutyrate. Enzyme and Microbial Technology, 27, 33–36.

    Article  Google Scholar 

  • Lee, D.-W., Park, Y.-M., & Lee, K.-Y. (2009). Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catalysis Surveys from Asia, 13, 63–77.

    Article  Google Scholar 

  • Leung, D. Y. C., & Guo, Y. (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology, 87, 883–890.

    Article  Google Scholar 

  • Li, E., Xu, Z. P., & Rudolph, V. (2009). MgCoAl–LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel. Applied Catalysis B: Environmental, 88, 42–49.

    Article  Google Scholar 

  • Lindlar, B., Luchinger, M., Haouas, M., Kogelbauer, A., Prins In, R., Galarneau, A., et al. (2001). Zeolites and mesoporous materials at the dawn of the 21st century. Studies in Surface Science and Catalysis, 135, 29–28.

    Article  Google Scholar 

  • Linko, Y. Y., Lamsa, M., Wu, X., Uosukainen, W., Sappala, J., & Linko, P. (1998). Biodegradable products by lipase biocatalysis. Journal of Biotechnology, 66, 41–50.

    Article  Google Scholar 

  • Liu, K. S. (1994). Preparation of fatty-acid methyl esters for gas- chromatographic analysis of lipids in biological-materials. Journal of American Oil Chemistry Society, 71, 1179–1187.

    Article  Google Scholar 

  • Liu, X., He, H., Wang, Y., Zhu, S., & Piao, X. (2008b). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87, 216–221.

    Google Scholar 

  • Liu, X., He, H., Wang, Y., & Zhu, S. (2007). Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications, 8, 1107–1111.

    Article  Google Scholar 

  • Liu, X., Piao, X., Wang, Y., Zhu, S., & He, H. (2008c). Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel, 87, 1076–1082.

    Google Scholar 

  • Liu, Q., Wang, A., Wang, X., Gao, P., Wang, X., & Zhang, T. (2008). Synthesis, characterization and catalytic applications of mesoporous γ-alumina from boehmite sol. Microporous and Mesoporous Materials, 111, 323–333.

    Article  Google Scholar 

  • Liu, R., Wang, X., Zhao, X., & Feng, P. (2008a). Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon, 46, 1664–1669.

    Google Scholar 

  • Liu, Y., Zhao, G., Liu, G., Wu, S., Chen, G., Zhang, W., et al. (2008d). Cyclopentadienyl-functionalized mesoporous MCM-41 catalysts for the transesterification of dimethyl oxalate with phenol. Catalysis Communications, 9, 2022–2025.

    Google Scholar 

  • Lopez, D. E., Suwannakarn, K., Bruce, D. A., & Goodwin, J. G., Jr. (2007). Esterification and transesterification on tungstated zirconia: Effect of calcination temperature. Journal of Catalysis, 247, 43–50.

    Article  Google Scholar 

  • Lotero, E., Goodwin, J. G., Bruce, D. A., Suwannakarn, K., Liu, Y., & Lopez, D. E. (2006). The catalysis of biodiesel synthesis. Catalysis, 19, 41–83.

    Article  Google Scholar 

  • Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A., & Goodwin, J. G., Jr. (2005). Synthesis of biodiesel via acid catalysis. Industrial and Engineering Chemistry Research, 44, 5353–5363.

    Article  Google Scholar 

  • Lou, W. Y., Zong, M. H., & Duan, Z. Q. (2008). Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology, 99, 8752–8758.

    Article  Google Scholar 

  • Lukic, I., Krstic, J., Jovanovi, D., & Skala, D. (2009). Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis. Bioresource Technology, 100, 4690–4696.

    Article  Google Scholar 

  • Ma, F., & Hanna, M. A. (1999). Biodiesel production: A review. Bioresource Technology, 70, 1–15.

    Article  Google Scholar 

  • Ma, H., Li, S., Wang, B., Wang, R., & Tian, S. (2008). Transesterification of rapeseed oil for synthesizing biodiesel by K/KOH/γ-Al2O3 as heterogeneous base catalyst. Journal of American Oil Chemistry Society, 85, 263–270.

    Article  Google Scholar 

  • Mabaso, E. I., Van Steen, E., & Claeys, M. (2006). Fischer-Tropsch synthesis on supported iron crystallites of different size. DGMK Tagungsbericht, 4, 93–100.

    Google Scholar 

  • Maceiras, R., Vega, M., Costa, C., Ramos, P., & Marquez, M. C. (2009). Effect of methanol content on enzymatic productionof biodiesel from waste frying oil. Fuel, 88, 2130–2134.

    Article  Google Scholar 

  • MacLeod, C. S., Harvey, A. P., Lee, A. F., & Wilson, K. (2008). Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chemical Engineering Journal, 135, 63–70.

    Article  Google Scholar 

  • Madras, G., Kolluru, C., & Kumar, R. (2004). Synthesis of biodiesel in supercritical fluids. Fuel, 83, 2029–2033.

    Article  Google Scholar 

  • Martyanov, I. N., & Sayari, A. (2008). Comparative study of triglyceride transesterification in the presence of catalytic amounts of sodium, magnesium, and calcium methoxides. Applied Catalysis A: General, 339, 45–52.

    Article  Google Scholar 

  • Matsuda, H., & Okuhara, T. (1998). Catalytic synthesis of N-alkylacrylamide from acrylonitrile and 1-adamantanol with a novel solid heteropoly compound. Catalysis Letters, 56, 241–243.

    Article  Google Scholar 

  • Mazzocchia, C., Modica, G., Kaddouri, A., & Nannicini, R. (2004). Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. Comptes Rendus Chimie, 7, 601–605.

    Article  Google Scholar 

  • Mbaraka, I. K., Radu, D. R., Lin, V. S. Y., & Shanks, B. H. (2003). Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. Journal of Catalysis, 219, 329–336.

    Article  Google Scholar 

  • Mbaraka, I. K., & Shanks, B. H. (2006). Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. Journal of the American Oil Chemists’ Society, 83, 79–91.

    Article  Google Scholar 

  • McCarty, G. S., & Weiss, P. S. (1999). Scanning probe studies of single nanostructures. Chemistry Review, 99, 1983–1990.

    Article  Google Scholar 

  • McNeff, C. V., McNeff, L. C., Yan, B., Nowlan, D. T., Rasmussen, M., Gyberg, A. E., et al. (2008). A continuous catalytic system for biodiesel production. Applied Catalysis A: General, 343, 39–48.

    Article  Google Scholar 

  • Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification: a review. Renewable and Sustainable Energy Reviews, 10, 248–268.

    Article  Google Scholar 

  • Melde, B. J., Holland, B. T., Blandford, C. F., & Stein, A. (1999). Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chemistry of Materials, 11, 3302–3308.

    Article  Google Scholar 

  • Melero, J. A., Grieken, R. V., & Morales, G. (2006). Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chemistry Review, 106, 3790–3812.

    Article  Google Scholar 

  • Mittelbach, M., & Remschmidt, C. (2004). Biodiesels–the comprehensive handbook. Graz, Austria: Karl-Franzens University.

    Google Scholar 

  • Mootabadi, H., Salamatinia, B., Bhatia, S., & Abdullah, A. Z. (2010). Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel, 89, 1818–1825.

    Article  Google Scholar 

  • Moreno, R., Salomoni, A., & Stamenkovic, I. (1997). Influence of slip rheology on pressure casting of alumina. Journal of the European Ceramic Society, 17, 327–331.

    Article  Google Scholar 

  • Mul, G. & Moulijn, J. A. (2005). In J. A. Anderson & M. F. Garcia (Eds.), Supported metals in catalysis (pp. 1–32). London: Imperial College Press.

    Google Scholar 

  • Nabeel, A., Jarrah, J. G., Ommen, V., & Lefferts, L. (2004). Immobilization of carbonnanofibers (CNFs). A new structured catalyst support. Preprints of Papers- American Chemical Society, Division of Fuel Chemistry, 49, 881–882.

    Google Scholar 

  • Ngamcharussrivichai, C., Totarat, P., & Bunyakiat, K. (2008). Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Applied Catalysis A: General, 341, 77–85.

    Article  Google Scholar 

  • Noiroj, K., Intarapong, P., Luengnaruemitchai, A., & Jai-In, S. (2009). A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy, 34, 1145–1150.

    Article  Google Scholar 

  • Noureddini, H., & Zhu, D. (1997). Kinetics of transesterification of soybean oil. Journal of American Oil Chemistry Society, 74, 1457–1463.

    Article  Google Scholar 

  • Passerini, S., Coustier, F., Giorgetti, M., & Smyrl, W. H. (1999). Li-Mn-O aerogels. Electrochemical and Solid-State Letters, 2, 483–485.

    Article  Google Scholar 

  • Perego, C., & Villa, P. (1997). Catalyst preparation methods. Catalysis Today, 34, 281–305.

    Article  Google Scholar 

  • Pinna, F. (1998). Supported metal catalysts preparation. Catalysis Today, 41, 129–137.

    Article  Google Scholar 

  • Pinnarat, T., & Savage, P. E. (2008). Assessment of noncatalytic biodiesel synthesis using supercritical reaction conditions. Industrial and Engineering Chemistry Research, 47, 6801–6808.

    Article  Google Scholar 

  • Pinto, A. C., Guarieiro, L. N., Rezende, M. J., Ribeiro, N. M., Torres, E. A., Lopes, W. A., et al. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16, 1313–1330.

    Article  Google Scholar 

  • Portnoff, M. A., Purta, D. A., Nasta, M. A., Zhang, J. & Pourarian, F. (2006). Methods for producing biodiesel. PCT No. WO2006/002087.

    Google Scholar 

  • Prouzet, E., Khani, Z., Bertrand, M., Tokumoto, M., Guyot-Ferreol, V., & Tranchant, J. F. (2006). An example of integrative chemistry: Combined gelation of boehmite and sodium alginate for the formation of porous beads. Microporous and Mesoporous Materials, 96, 369–375.

    Article  Google Scholar 

  • Prouzet, E., Tokumoto, M. & Krivaya, A. (2004). Method for preparing beads containing a crosslinked mineral matrix. Patent No. WO2004009229

    Google Scholar 

  • Ramu, S., Lingaiah, N., Devi, B. L. A. P., Prasad, R. B. N., Suryanarayana, I., & Prasad, P. S. S. (2004). Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: Effect of method of preparation of the catalyst on its structural stability and reactivity. Applied Catalysis A: General, 276, 163–168.

    Article  Google Scholar 

  • Ratanawilai, S. B., Suppalukpanya, K., & Tongurai, C. (2005). Biodiesel from crude palm oil by sulfonated Vanadia-titania catalyst. PSU-UNS International Conference on Engineering and Environment – ICEE.

    Google Scholar 

  • Richardson, J. T. (1989). Principles of catalyst development (pp. 6–7). New York: Plenum Press.

    Book  Google Scholar 

  • Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98, 648–653.

    Article  Google Scholar 

  • Ryoo, R., Jun, S., Kim, J. M., & Jim, M. J. (1997). Generalised route to the preparation of mesoporous metallosilicates via post-synthetic metal implantation. Chemical Communications, 22, 2225–2226.

    Article  Google Scholar 

  • Saka, S., & Dadan, K. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80, 225–231.

    Article  Google Scholar 

  • Samart, C., Sreetongkittikul, P., & Sookman, C. (2009). Heterogeneous catalysis of transesterification of soybean oil using KI/mesoporous silica. Fuel Processing Technology, 90, 922–925.

    Article  Google Scholar 

  • Schilling, C. H., Sikora, M., Tomasik, P., Li, C., & Garcia, V. (2002). Rheology of alumina nanoparticle suspensions: effects of lower saccharides and sugar alcohols. Journal of the European Ceramic Society, 22, 917–921.

    Article  Google Scholar 

  • Schuchardt, U., Serchelia, R., & Vargas, R. M. (1998). Transesterification of vegetable oils: A review. Journal of the Brazilian Chemical Society, 9, 199–210.

    Article  Google Scholar 

  • Schwab, A. W., Bagby, M. O., & Freedman, B. (1987). Preparation and properties of diesel fuels from vegetable oils. Fuel, 66, 1372–1378.

    Article  Google Scholar 

  • Schwarz, J. A., Contescu, C., & Contescu, A. (1995). Methods of preparation of catalytic materials. Chemistry Review, 95, 477–510.

    Article  Google Scholar 

  • Sercheli, R., Vargas, R. M., & Schuchardt, U. (1999). Alkyguanidine-catalyzed heterogeneous transesterification of soybean oil. Journal of American Oil Chemistry Society, 76, 1207–1210.

    Article  Google Scholar 

  • Serio, M. D., Cozzolino, M., Tesser, R., Patrono, P., Pinzari, F., Bonelli, B., et al. (2007). Vanadyl phosphate catalysts in biodiesel production. Applied Catalysis A: General, 320, 1–7.

    Article  Google Scholar 

  • Serio, M. D., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R., & Santacesaria, E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial and Engineering Chemistry Research, 45, 3009–3014.

    Article  Google Scholar 

  • Serio, M. D., Tesser, R., Dimiccoli, M., Cammarota, F., Nastasi, M., & Santacesaria, E. (2005). Synthesis of biodiesel via homogeneous Lewis acid catalyst. Journal of Molecular Catalysis A: Chemical, 239, 111–115.

    Article  Google Scholar 

  • Serio, M. D., Tesser, R., Pengmei, L., & Santacesaria, E. (2008). Heterogeneous catalysts for biodiesel production. Energy & Fuels, 22, 207–217.

    Article  Google Scholar 

  • Shah, S., & Gupta, M. N. (2007). Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry, 42, 409–414.

    Article  Google Scholar 

  • Shu, Q., Zhang, Q., Xu, G., Nawaz, Z., Wang, D., & Wang, J. (2009). Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Processing Technology, 90, 1002–1008.

    Article  Google Scholar 

  • Shumaker, J. L., Crofcheck, C., Tackett, S. A., Jimenez, E. S., Morgan, T., Ji, Y., et al. (2008). Biodiesel synthesis using calcined layered double hydroxide catalysts. Applied Catalysis B: Environmental, 82, 120–130.

    Article  Google Scholar 

  • Siakpas, P., Karagiannidis, A., & Theodoseli, M. (2006). Biodiesel feedstock, production and uses (World sustainable energy days). Austria: Wels.

    Google Scholar 

  • Silva, C., Weschenfelder, T. A., Rovani, S., Corazza, F. C., Corazza, M. L., Dariva, C., et al. (2007). Continuous production of fatty acid ethyl esters from soybean oil in compressed ethanol. Industrial and Engineering Chemistry Research, 46, 5304–5309.

    Article  Google Scholar 

  • Singh, A. K. & Fernando, S. D. (2006a). Catalyzed fasttransesterification of soybean oil using ultrasonication. American Society of Agricultural Engineers, ASAE Annual Meeting, Portland, Oregon.

    Google Scholar 

  • Singh, A. K., & Fernando, S. D. (2008). Transesterification of soybean oil using heterogeneous catalysts. Energy & Fuels, 22, 2067–2069.

    Article  Google Scholar 

  • Singh, A., He, B., Thompson, J., & Van Gerpen, J. (2006). Process optimization of biodiesel production using different alkaline catalysts. Applied Engineering in Agriculture, 22, 597–600.

    Article  Google Scholar 

  • Smith, G. V., & Notheisz, F. (2006). Heterogeneous catalysis in organic chemistry. New York, NY: Academic Press Inc.

    Google Scholar 

  • Song, K. C., & Chung, I. J. (1989). Rheological properties of aluminium hydroxide sols during sol-gel transition. Journal of Non-Crystalline Solids, 107, 193–198.

    Article  Google Scholar 

  • Sreeprasanth, P. S., Srivastava, R., Srinivas, D., & Ratnasamy, P. (2006). Hydrophobic, solid acid catalysts for production of biofuels and lubricants. Applied Catalysis A: General, 314, 148–159.

    Article  Google Scholar 

  • Stamenkovic, O. S., Lazic, M. L., Todorovic, Z. B., Veljkovic, V. B., & Skala, D. U. (2007). The effect of agitation intensity on alkali-catalyzed methanolysis of sunflower oil. Bioresource Technology, 98, 2688–2699.

    Article  Google Scholar 

  • Stern, R. & Hillion, G. (1990). Purification of esters. European Patent Application No. EP 356317.

    Google Scholar 

  • Suppes, G. J., Dasari, M. A., Doskocil, E. J., Mankidy, P. J., & Goff, M. J. (2004). Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General, 257, 213–223.

    Article  Google Scholar 

  • Tamalampudi, S., Talukder, M. R., Hamad, S., Numata, T., Kondo, A., & Fukuda, H. (2008). Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochemical Engineering Journal, 39, 185–189.

    Article  Google Scholar 

  • Tanabe, K., Misono, M., Ono, Y., & Hattori, H. (1989). New solid acids and bases. Amsterdam: Elsevier.

    Google Scholar 

  • Tateno, T. & Sasaki, T. (2004). Process for producing fatty acid fuels comprising fatty acids esters. U.S. Patent 6818026.

    Google Scholar 

  • Tsai, M. S., & Yung, F. H. (2007). Boehmite modification of nano grade α-alumina and the rheological properties of the modified slurry. Ceramics International, 33, 739–745.

    Article  Google Scholar 

  • Vicente, G., Coteron, A., Martinez, M., & Aracil, J. (1998). Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Industrial Crops and Products, 8, 29–35.

    Article  Google Scholar 

  • Vyas, A. P., Subrahmanyam, N., & Patal, P. A. (2009). Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel, 88, 625–628.

    Article  Google Scholar 

  • Wang, Z. M., & Lin, Y. S. (1998). Sol-gel synthesis of pure and copper oxide coated mesoporous alumina granular particles. Journal of Catalysis, 174, 43–51.

    Article  Google Scholar 

  • Wang, Y., Ou, S., Liu, P., Xue, F., & Tang, S. (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 252, 107–112.

    Article  Google Scholar 

  • Wang, L., & Yang, J. (2007). Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel, 86, 328–333.

    Article  Google Scholar 

  • Ward, D. A., & Ko, E. L. (1995). Sol-gel synthesis of zirconia supports. Important properties for generating n-butane isomerization activity upon sulfate promotion. Journal of Catalysis, 157, 321–333.

    Article  Google Scholar 

  • Wei, Z., Xu, C., & Li, B. (2009). Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresource Technology, 100, 2883–2885.

    Article  Google Scholar 

  • Xiao, F. S. (2004). Hydrothermally stable and catalytically active ordered mesoporous materials assembled from preformed zeolites nanoclusters. Catalysis Surveys from Asia, 35, 151–159.

    Article  Google Scholar 

  • Xie, W., & Huang, X. (2006). Synthesis of biodiesel from soybean oil using heterogeneous kf/zno catalyst. Catalysis Letters, 107, 53–59.

    Article  Google Scholar 

  • Xie, W. L., Peng, H., & Chen, L. G. (2006a). Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General, 300, 67–74.

    Google Scholar 

  • Xie, W., Peng, H., & Chen, L. (2006b). Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical, 246, 24–32.

    Google Scholar 

  • Xie, W., Yang, Z., & Chun, H. (2007). Catalytic properties of lithium-doped ZnO catalysts used for biodiesel preparations. Industrial and Engineering Chemistry Research, 46, 7942–7949.

    Article  Google Scholar 

  • Xu, L., Li, W., Hu, J., Yang, X., & Guo, Y. (2009). Biodiesel production from soybean oil catalyzed by multifunctionalized Ta2O5/SiO2-[H3PW12O40/R] (R = Me or Ph) hybrid catalyst. Applied Catalysis B: Environmental, 90, 587–594.

    Article  Google Scholar 

  • Yamaguchi, T. (1990). Recent progress in solid superacid. Applied Catalysis A: General, 61, 1–25.

    Article  Google Scholar 

  • Yan, S., Lu, H., & Liang, B. (2008). Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production. Energy & Fuels, 22, 646–651.

    Article  Google Scholar 

  • Yan, S., Salley, S. O., & Ng, K. Y. S. (2009). Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Applied Catalysis A: General, 353, 203–212.

    Article  Google Scholar 

  • Yin, J. Z., Xiao, M., & Song, J. B. (2008). Biodiesel from soybean oil in supercritical methanol with co-solvent. Energy Conversion and Management, 49, 908–912.

    Article  Google Scholar 

  • Zhang, Y., Dube, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89, 1–16.

    Article  Google Scholar 

  • Zheng, S., Kates, M., Bube, M. A., & McLean, D. D. (2006). Acid-catalyzed production of biodiesel from waste frying oil. Biomass and Bioenergy, 30, 267–272.

    Article  Google Scholar 

  • Zheng, Y., Wua, X. M., Christopher, B. W., Jing, Q., & Zhu, L. M. (2009). Dual response surface-optimized process for feruloylated diacylglycerols by selective lipase-catalyzed transesterification in solvent free system. Bioresource Technology, 100, 2896–2901.

    Article  Google Scholar 

  • Zong, M. H., Duan, Z. Q., Lou, W. Y., Smith, T. J., & Wu, H. (2007). Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry, 9, 434–437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Islam, A., Ravindra, P. (2017). Literature Review. In: Biodiesel Production with Green Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-45273-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45273-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45272-2

  • Online ISBN: 978-3-319-45273-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics