Skip to main content

Introduction

  • Chapter
  • First Online:
  • 886 Accesses

Abstract

The enormous worldwide use of diesel fuel and the rapid depletion of crude oil reserves have prompted keen interest and exhaustive research into suitable alternative fuel. Currently, attention is focused on human and environmental safety, in relation to the release of hydrocarbons into the environment. Petroleum derivatives contain benzene, toluene, ethylbenzene, and xylene isomers, the major components of fossil fuel, which are hazardous substances subject to regulations in many parts of the world (Serrano, Gallego, & Gonzalez, 2006). As a consequence, the demand of green energy is increasingly gaining international attention. When green energy is used, the primary objective is to reduce air pollution, and minimize or eradicate completely any impacts to the environment (Burgess, 1990). Among many possible sources, apparently, biodiesel is a viable alternative energy to conventional diesel fuel, which is of environmental concern and is under legislative pressure to be replaced by biodegradable substitutes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah, A. Z., Razali, N., & Lee, K. T. (2009). Optimization of mesoporous K/SBA-15 catalyzed transesterification of palm oil using response surface methodology. Fuel Processing Technology, 90, 958–964.

    Article  Google Scholar 

  • Akoh, C. C., Chang, S. W., Lee, G. C., Shaw, J. F., Akoh, C. C., Chang, S. W., et al. (2007). Enzymatic Approach to Biodiesel Production. Journal of Agricultural and Food Chemistry, 55, 8995–9005.

    Article  Google Scholar 

  • Albuquerque, M. C. G., Gonzalez, J. S., Robles, J. M. M., Tost, R. M., Castellon, E. R., Lopez, A. J., et al. (2008). MgM (M = Al and Ca) oxides as basic catalysts in transesterification processes. Applied Catalysis A: General, 347, 162–168.

    Article  Google Scholar 

  • Arzamendi, G., Campoa, I., Arguinarena, E., Sanchez, M., Montes, M., & Gandıa, L. M. (2007). Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chemical Engineering Journal, 134, 123–130.

    Article  Google Scholar 

  • Benjapornkulaphong, S., Ngamcharussrivichai, C., & Bunyakiat, K. (2009). Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chemical Engineering Journal, 145, 468–474.

    Article  Google Scholar 

  • Bota, R. M., Houthoofd, K., Grobet, P. J., & Jacobs, P. A. (2010). Superbase catalysts from thermally decomposed sodium azide supported on mesoporous γ-alumina. Catalysis Today, 152, 99–103.

    Article  Google Scholar 

  • Boz, N., Degirmenbasi, N., & Kalyon, D. M. (2009). Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Applied Catalysis B: Environmental, 89, 590–596.

    Article  Google Scholar 

  • Burgess, J. C. (1990). The contribution of efficient energy pricing to reducing carbon dioxide emissions. Energy Policy, 18, 449–455.

    Article  Google Scholar 

  • Centi, G., & Perathoner, S. (2003a). Integrated design for solid catalysts in multiphase reactions. CATTECH, 7, 78–89.

    Article  Google Scholar 

  • Centi, G., & Perathoner, S. (2003b). Novel catalyst design for multiphase reactions. Catalysis Today, 3, 79–80.

    Google Scholar 

  • Chuah, G. K., Jaenicke, S., & Xu, T. H. (2000). The effect of digestion on the surface area and porosity of alumina. Microporous and Mesoporous Materials, 37, 345–353.

    Article  Google Scholar 

  • Cole-Hamilton, D. J. (2003). Homogeneous catalysis-new approaches to catalyst separation, recovery, and recycling. Science, 299, 1702–1706.

    Article  Google Scholar 

  • Donaldson, K., Li, X. Y., & MacNee, W. (1998). Ultrafine (nanometre) particle mediated lung injury. Journal of Aerosol Science, 29, 553–560.

    Article  Google Scholar 

  • Dossin, T. F., Reyniers, M. F., & Marin, G. B. (2006). Kinetics of heterogeneously MgO-catalyzed transesterification. Applied Catalysis B: Environmental, 61, 35–45.

    Article  Google Scholar 

  • Freedman, B., & Pryde, E. H. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists’ Society, 61, 1638–1643.

    Article  Google Scholar 

  • Haas, M. J., McAloon, A. J., Yee, W. C., & Foglia, T. A. (2006). A process model to estimate biodiesel production costs. Bioresource Technology, 97, 671–678.

    Article  Google Scholar 

  • Han, H., & Guan, Y. (2009). Synthesis of biodiesel from rapeseed oil using K2O/γ -Al2O3 as nano-solid-base catalyst. Journal of Natural Sciences, 14, 75–79.

    Google Scholar 

  • Ignat, M., Oers, C. J. V., Vernimmen, J., Mertens, M., Vermaak, S. P., Meynen, V., et al. (2010). Textural property tuning of ordered mesoporous carbon obtained by glycerol conversion using SBA-15 silica as template. Carbon, 48, 1609–1618.

    Article  Google Scholar 

  • Jegannathan, K. R., Abang, S., Poncelet, D., Chan, E. S., & Ravindra, P. (2008). Production of biodiesel using immobilized lipase-a critical review. Critical Reviews in Biotechnology, 28, 253–264.

    Article  Google Scholar 

  • Kim, H. J., Kang, B. S., Kim, M. J., Park, Y. M., Kim, D. K., Lee, J. S., et al. (2004). Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today, 93–95, 315–320.

    Article  Google Scholar 

  • King, C. J. (2007). In Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, electronic version.

    Google Scholar 

  • Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710–712.

    Article  Google Scholar 

  • Liu, Y., Zhao, G., Liu, G., Wu, S., Chen, G., Zhang, W., et al. (2008d). Cyclopentadienyl-functionalized mesoporous MCM-41 catalysts for the transesterification of dimethyl oxalate with phenol. Catalysis Communications, 9, 2022–2025.

    Google Scholar 

  • Lopez, D., Goodwin, J., Bruce, D., & Lotero, E. (2005). Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General, 295, 97–105.

    Article  Google Scholar 

  • Lotero, E., Goodwin, J. G., Bruce, D. A., Suwannakarn, K., Liu, Y., & Lopez, D. E. (2006). The catalysis of biodiesel synthesis. Catalysis, 19, 41–83.

    Article  Google Scholar 

  • Ma, H., Li, S., Wang, B., Wang, R., & Tian, S. (2008). Transesterification of rapeseed oil for synthesizing biodiesel by K/KOH/γ-Al2O3 as heterogeneous base catalyst. Journal of American Oil Chemistry Society, 85, 263–270.

    Article  Google Scholar 

  • Meher, L. C., Kulkarni, M. G., Dalai, A. K., & Naik, S. N. (2006a). Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts. European Journal of Lipid Science and Technology, 108, 389–397.

    Google Scholar 

  • Mekhilef, S., Siga, S., & Saidur, R. (2011). A review on palm oil biodiesel as a source of renewable fuel. Renewable and Sustainable Energy Reviews, 15, 1937–1949.

    Article  Google Scholar 

  • MPOB (Malaysian Palm Oil Board). (2007). Overview of the Malaysian oil palm industry. Retrieved from www.mpob.gov.my.

    Google Scholar 

  • Ngamcharussrivichai, C., Totarat, P., & Bunyakiat, K. (2008). Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Applied Catalysis A: General, 341, 77–85.

    Article  Google Scholar 

  • Pariente, J. P., Dıaz, I., Mohino, F., & Sastre, E. (2003). Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts. Applied Catalysis A: General, 254, 173–188.

    Article  Google Scholar 

  • Perego, C., & Villa, P. (1997). Catalyst preparation methods. Catalysis Today, 34, 281–305.

    Article  Google Scholar 

  • Rashtizadeh, E., Farzaneh, F., & Ghandi, M. (2010). A comparative study of KOH loaded on double aluminosilicate layers, microporous and mesoporous materials as catalyst for biodiesel production via transesterification of soybean oil. Fuel, 89, 3393–3398.

    Article  Google Scholar 

  • Samart, C., Sreetongkittikul, P., & Sookman, C. (2009). Heterogeneous catalysis of transesterification of soybean oil using KI/mesoporous silica. Fuel Processing Technology, 90, 922–925.

    Article  Google Scholar 

  • Sasidharan, M., & Kumar, R. (2004). Transesterification over various zeolites under liquid-phase conditions. Journal of Molecular Catalysis A: Chemical, 210, 93–98.

    Article  Google Scholar 

  • Serrano, A., Gallego, M., & Gonzalez, J. L. (2006). Assessment of natural attenuation of volatile aromatic hydrocarbons in agricultural soil contaminated with diesel fuel. Environmental Pollution, 144, 203–209.

    Article  Google Scholar 

  • Shah, P., Ramaswamy, A. V., Lazarc, K., & Ramaswamy, V. (2004). Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction. Applied Catalysis A: General, 273, 239–248.

    Article  Google Scholar 

  • Shuwen, L., Tong, C., Dongshen, T., Yi, Z., Yongcheng, L., & Gongyin, W. (2007). Synthesis of diphenyl carbonate via transesterification catalyzed by HMS mesoporous molecular sieves containing heteroelements. Chinese Journal of Catalysis, 28, 937–939.

    Article  Google Scholar 

  • Sun, L. B., Gong, L., Liu, X. Q., Gu, F. N., Chun, Y., & Zhu, J. H. (2009). Generating basic sites on zeolite Y by potassium species modification: Effect of base precursor. Catalysis Letters, 132, 218–224.

    Article  Google Scholar 

  • Suppes, G. J., Dasari, M. A., Doskocil, E. J., Mankidy, P. J., & Goff, M. J. (2004). Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General, 257, 213–223.

    Article  Google Scholar 

  • Verziu, M., Florea, M., Simon, S., Simon, V., Filip, P., Parvulescu, V. I., et al. (2009). Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluorides—Evidences of the nature of the active site and catalytic performances. Journal of Catalysis, 263, 56–66.

    Article  Google Scholar 

  • Vyas, A. P., Subrahmanyam, N., & Patal, P. A. (2009). Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel, 88, 625–628.

    Article  Google Scholar 

  • Wang, Y., Zhang, F., Xu, S., Yang, L., Li, D., Evans, D. G., et al. (2008). Preparation of macrospherical magnesia-rich magnesium aluminate spinel catalysts for methanolysis of soybean oil. Chemical Engineering Science, 63, 4306–4312.

    Article  Google Scholar 

  • Wen, L., Wang, Y., Lu, D., Hu, S., & Han, H. (2010). Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel, 89, 2267–2271.

    Article  Google Scholar 

  • Williams, J. L. (2001). Monolith structures, materials, properties and uses. Catalysis Today, 69, 3–9.

    Article  Google Scholar 

  • Xie, W. L., Peng, H., & Chen, L. G. (2006a). Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General, 300, 67–74.

    Google Scholar 

  • Xie, W., Peng, H., & Chen, L. (2006b). Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical, 246, 24–32.

    Google Scholar 

  • Xin, B. H., Zhen, S. X., Hua, L. X., & Yong, L. S. (2009). Synthesis of porous CaO microsphere and its application in catalyzing transesterification reaction for biodiesel. Transactions of the Nonferrous Metals Society of China, 19, 674–677.

    Article  Google Scholar 

  • Zhang, Y., Dube, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89, 1–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Islam, A., Ravindra, P. (2017). Introduction. In: Biodiesel Production with Green Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-45273-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45273-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45272-2

  • Online ISBN: 978-3-319-45273-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics