Skip to main content

Towards a Real-Time Big GeoData Geolocation System Based on Visual and Textual Features

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9876))

Included in the following conference series:

Abstract

During the recent years, new sensors and new methods of collecting geospatial information emerged. This technological advancement is behind the apparition of Big GeoData concept. The exploitation of such concept demonstrates its effectiveness in various activity sectors. However, it poses new challenges that cannot be overcomed using traditional solutions. We believe that a good exploitation of Big GeoData can be guaranteed by establishing, first of all, a good placing strategy yet called geolocation estimation activity. In fact, generating efficient geospatial knowledge is closely linked to positional accuracy. Since that traditional geolocation estimation methods are not able to handle Big GeoData variety, a new solution has to be proposed. This is the object of the present article where the architecture of a real-time multimode approach is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anselin, L.: Some robust approaches to testing and estimation in spatial econometrics. Reg. Sci. Urban Econo. 20(2), 141–163 (1990)

    Article  Google Scholar 

  2. Haklay, M.: How good is volunteered geographical information? a comparative study of OpenStreetMap and Ordnance Survey Datasets. Environ. Plan. B: Plan. Des. 37, 682–703 (2010)

    Article  Google Scholar 

  3. Han, B., Cook, P., Baldwin, T.: Text-based twitter user geolocation prediction. Artif. Intell. Res. 49, 451–500 (2014)

    Google Scholar 

  4. Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. GeoJournal 69(4), 211–221 (2007)

    Article  Google Scholar 

  5. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute (2011)

    Google Scholar 

  6. Hunting Down Ebola with Big Data. http://www.datanami.com/2014/11/03/hunting-ebola-big-data/

  7. Choi, J., Friedland, J.: Multimodal Location Estimation of Videos and Images. Springer (2014)

    Google Scholar 

  8. Leidner, J L., Lieberman, M D.: Detecting geographical references in the form of place names and associated spatial natural language. SIGSPATIAL Spec. 3(2), 511 (2011). ACM, New York

    Google Scholar 

  9. Quercini, G. Samet, H. Sankaranarayanan, J., Lieberman, M.D.: Determining the spatial reader scopes of news sources using local lexicons. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 43–52. ACM, New York (2010)

    Google Scholar 

  10. Rahimi, A., Cohn, T., Baldwin, T.: Twitter user geolocation using a unified text and network prediction model. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 630–636. Cornell University Library (2015)

    Google Scholar 

  11. Friedland, G., Vinyals, O., Darrell, T.: Multimodal location estimation. In: ACM Multimedia (2010)

    Google Scholar 

  12. Hays, J., Efros, A.A.: IM2GPS: estimating geographic information from a single image. In: Proceedings of IEEE Conference on computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  13. Hare, J., Davies, J., Samangooei, S., Lewis, P.: Placing photos with a multimodal probability density function. In: Proceedings of International Conference on Multimedia Retrieval, Glasgow, GB (2014)

    Google Scholar 

  14. Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: SfM with MRFs: Discrete-continuous optimization for large-scale structure from motion. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2841–2853 (2013)

    Article  Google Scholar 

  15. Snavely, N., Seitz, S M., Szeliski, R.: Modeling the world from internet photo collections. IJCV 80(2), 189–210 (2008)

    Google Scholar 

  16. Dalton, C.M., Thatcher, J.: Inflated granularity: Spatial “Big Data” and geodemographics. Big Data Soc. 2(2), 1–15 (2015)

    Article  Google Scholar 

  17. Eagle, N., Greene, K.: Reality Mining: Using Big Data to Engineer a Better World, 1st edn. The MIT Press, Cambridge (2014)

    Google Scholar 

  18. Big data: The future is in analytics. http://geospatialworld.net/Magazine/MArticleView.aspx?aid=30512

  19. Mooney, P., Winstanley, A. C.: Is VGI big data? In: GISRUK UK (2015)

    Google Scholar 

  20. Li, S., Dragicevic, S., Anton, F., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang, B., Haworth, J., Stein, A., Cheng, T.: Geospatial big data handling theory and methods: a review and research challenges. ISPRS J. Photogrammetry Remote Sens. 115, 119–133 (2015)

    Article  Google Scholar 

  21. Eldawy, A., Mokbel, M F.:The ecosystem of SpatialHadoop. In: ACM SIGSPATIAL Special (2014)

    Google Scholar 

  22. Yu, J., Wu, J, Sarwat, M.: A demonstration of GeoSpark: a cluster computing framework for processing big spatial data. In: Proceedings of IEEE International Conference on Data Engineering, Helsinki, Finaland (2016)

    Google Scholar 

  23. GeoMesa. http://www.ccri.com/case-studies/geomesa/

  24. GeoMesa: Scalable Geospatial Analytics on Accumulo. https://www.locationtech.org/content/geomesa-scalable-geospatial-analytics-accumulo-0

  25. Hauff, C., Houben, G.-J.: Geo-location estimation of flickr images: social web based enrichment. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 85–96. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Deselaers, T., Weyand, T., Ney, H.: Image retrieval and annotation using maximum entropy. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 725–734. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarra Hasni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hasni, S., Faiz, S. (2016). Towards a Real-Time Big GeoData Geolocation System Based on Visual and Textual Features. In: Nguyen, N., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2016. Lecture Notes in Computer Science(), vol 9876. Springer, Cham. https://doi.org/10.1007/978-3-319-45246-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45246-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45245-6

  • Online ISBN: 978-3-319-45246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics