Dynamic Cooperative Interaction Strategy for Solving RCPSP by a Team of Agents

  • Piotr JędrzejowiczEmail author
  • Ewa Ratajczak-Ropel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


In this paper a dynamic cooperative interaction strategy for the A-Team solving the Resource-Constrained Project Scheduling Problem (RCPSP) is proposed and experimentally validated. The RCPSP belongs to the class of NP-hard optimization problems. To solve this problem a team of asynchronous agents (A-Team) has been implemented using multiagent environment. An A-Team consist of the set of objects including multiple optimization agents, manager agents and the common memory which through interactions produce solutions of hard optimization problems. In this paper the dynamic cooperative interaction strategy is proposed. The strategy supervises cooperation between agents and the common memory. To validate the proposed approach the preliminary computational experiment has been carried out.


Resource-Constrained Project Scheduling Problem RCPSP Optimization Agent A-Team 


  1. 1.
    Agarwal, A., Colak, S., Erenguc, S.: A neurogenetic approach for the resource-constrained project scheduling problem. Comput. Oper. Res. 38, 44–50 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: E-JABAT - an implementation of the web-based A-Team. In: Nguyen, N.T., Jain, L.C. (eds.) Intelligent Agents in the Evolution of Web and Applications. SCI, vol. 167, pp. 57–86. Springer, Heilderberg (2009)CrossRefGoogle Scholar
  3. 3.
    Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: Influence of the working strategy on A-Team performance. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Knowledge Management. SCI, vol. 260, pp. 83–102. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Błażewicz, J., Lenstra, J., Rinnooy, A.: Scheduling subject to resource constraints: classification and complexity. Discrete Appl. Math. 5, 11–24 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112, 3–41 (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cadenas, J.M., Garrido, M.C., Muñoz, E.: Using machine learning in a cooperative hybrid parallel strategy of metaheuristics. Inf. Sci. 179(19), 3255–3267 (2009)CrossRefGoogle Scholar
  7. 7.
    Demeulemeester, E., Herroelen, W.: Project Scheduling: A Research Handbook. Kluwer Academic Publishers, Boston (2002)zbMATHGoogle Scholar
  8. 8.
    Fang, C., Wang, L.: An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem. Comput. Oper. Res. 39, 890–901 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fleszar, K., Hindi, K.: Solving the resource-constrained project scheduling problem by a variable neighbourhood search. Eur. J. Oper. Res. 155, 402–413 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hartmann, S., Kölisch, R.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jędrzejowicz, P., Ratajczak-Ropel, E.: New generation A-Team for solving the resource constrained project scheduling. In: Proceedings of the Eleventh International Workshop on Project Management and Scheduling, Istanbul, pp. 156–159 (2008)Google Scholar
  12. 12.
    Jędrzejowicz, P., Ratajczak-Ropel, E.: Solving the RCPSP/max problem by the team of agents. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 734–743. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement learning strategies for A-Team solving the resource-constrained project scheduling problem. Neurocomputing 146, 301–307 (2014)CrossRefGoogle Scholar
  14. 14.
    Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement learning strategy for solving the MRCPSP by a team of agents; intelligent decision technologies. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol. 39, pp. 537–548. Springer, Heidelberg (2015)Google Scholar
  15. 15.
    Jędrzejowicz, P., Ratajczak-Ropel, E.: PLA based strategy for solving RCPSP by a team of agents. Comput. Intell. Tools Process. Collective Data, J. Univ. Sci. (to appear 2016)Google Scholar
  16. 16.
    Jędrzejowicz, P., Wierzbowska, I.: JADE-based A-Team environment. In: Alexandrov, V.N., Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 719–726. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Palpant, M., Artigues, C., Michelon, P.: LSSPER: solving the resource-constrained project scheduling problem with large nighbourhood search. Ann. Oper. Res. 131, 237–257 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pelta, D., Cruz, C., Sancho-Royo, A., Verdegay, J.L.: Using memory and fuzzy rules in a cooperative multi-thread strategy for optimization. Inf. Sci. 176(13), 1849–1868 (2006)CrossRefGoogle Scholar
  19. 19.
    Paraskevopoulos, D.C., Tarantilis, C.D., Ioannou, G.: Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm. Expert Syst. Appl. 39, 3983–3994 (2012)CrossRefGoogle Scholar
  20. 20.
    Ranjbar, M.: Solving the resource-constrained project scheduling problem using filter-and-fun approach. Appl. Math. Comput. 201, 313–318 (2008)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Talukdar, S., Baerentzen, L., Gove, A., De Souza, P.: Asynchronous Teams: Co-operation Schemes for Autonomous, Computer-Based Agents. Technical report EDRC 18–59-96, Carnegie Mellon University, Pittsburgh (1996)Google Scholar
  22. 22.
    Valls, V., Ballestín, F.: A population-based approach to the resource-constrained project scheduling problem. Ann. Oper. Res. 131, 305–324 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Valls, V., Ballestín, F., Quintanilla, S.: A hybrid genetic algorithm for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 185, 495–508 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, New York (2009)Google Scholar
  25. 25.
    Zheng, X., Wang, L.: A multi-agent optimization algorithm for resource constrained project scheduling problem. Expert Syst. Appl. 42, 6039–6049 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Information SystemsGdynia Maritime UniversityGdyniaPoland

Personalised recommendations