Some Remarks on the Mean-Based Prioritization Methods in AHP

  • Konrad KułakowskiEmail author
  • Anna Kȩdzior
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


EVM (eigenvector method) and GMM (geometric mean method) are probably the two most popular priority deriving techniques for AHP (Analytic Hierarchy Process). Although much has already been discussed about these methods, one frequently repeated question is: what do they have in common? In this paper we show that both these methods can be constructed based on the same principle that the priority of one alternative should correspond to the weighted mean of priorities of other alternatives. We also show how the accepted principle can be used to construct priority deriving methods for the generalized (non-reciprocal) pairwise comparisons matrices.


Decision making MCDM AHP Eigenvalue method Geometric mean method Pairwise comparisons 


  1. 1.
    Bana e Costa, C.A., Vansnick, J.: A critical analysis of the eigenvalue method used to derive priorities in AHP. Eur. J. Oper. Res. 187(3), 1422–1428 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bozóki, S., Fülöp, J., Rónyai, L.: On optimal completion of incomplete pairwise comparison matrices. Math. Comput. Model. 52(1–2), 318–333 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brunelli, M., Fedrizzi, M.: Axiomatic properties of inconsistency indices. J. Oper. Res. Soc. (2013)Google Scholar
  4. 4.
    Crawford, G.B.: The geometric mean procedure for estimating the scale of a judgement matrix. Math. Modell. 9, 327–334 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dyer, J.S.: Remarks on the analytic hierarchy process. Manage. Sci. 36(3), 249–258 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fedrizzi, M., Brunelli, M.: On the priority vector associated with a reciprocal relation and a pairwise comparison matrix. J. Soft Comput. 14(6), 639–645 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach to preference learning from pairwise comparisons in case of decision under uncertainty. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 584–594. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Ho, W.: Integrated analytic hierarchy process and its applications - a literature review. Eur. J. Oper. Res. 186(1), 18–18 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hovanov, N.V., Kolari, J.W., Sokolov, M.V.: Deriving weights from general pairwise comparison matrices. Math. Soc. Sci. 55(2), 205–220 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ishizaka, A., Lusti, M.: How to derive priorities in AHP: a comparative study. Central Europ. J. Oper. Res. 14, 387–400 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Janicki, R., Zhai, Y.: On a pairwise comparison-based consistent non-numerical ranking. Logic J. IGPL 20(4), 667–676 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kahneman, D.: Thinking, Fast and Slow. New York, Farrar, Straus and Giroux (2011)Google Scholar
  13. 13.
    Koczkodaj, W.W., Szwarc, R.: On axiomatization of inconsistency indicators for pairwise comparisons. Fundamenta Informaticae 4(132), 485–500 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kou, G., Lin, C.: A cosine maximization method for the priority vector derivation in AHP. Eur. J. Oper. Res. 235(1), 225–232 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kułakowski, K.: Heuristic rating estimation approach to the pairwise comparisons method. Fundamenta Informaticae 133, 367–386 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kułakowski, K.: On the properties of the priority deriving procedure in the pairwise comparisons method. Fundamenta Informaticae 139(4), 403–419 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kułakowski, K.: Notes on the existence of a solution in the pairwise comparisons method using the heuristic rating estimation approach. Ann. Math. Artif. Intell. 77(1), 105–121 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kułakowski, K., Grobler-Dȩbska, K., Wąs, J.: Heuristic rating estimation: geometric approach. J. Glob. Optim. 62(3), 529–543 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Meyer, C.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, SIAM, Philadelphia (2000)CrossRefGoogle Scholar
  20. 20.
    Mikhailov, L.: Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets Syst. 134(3), 365–385 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Perron, O.: Zur theorie der matrices. Math. Ann. 64(2), 248–263 (1907)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New York (2000)zbMATHGoogle Scholar
  23. 23.
    Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3), 234–281 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Smith, J.E., Winterfeldt, D.: Anniversary article: decision analysis in management science. Manage. Sci. 50(5), 561–574 (2004)CrossRefGoogle Scholar
  25. 25.
    Vaidya, O.S., Kumar, S.: Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res. 169(1), 1–29 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical EngineeringAGH University of Science and TechnologyCracowPoland
  2. 2.Faculty of Applied MathematicsCracowPoland

Personalised recommendations