A Constraint-Based Approach to Modeling and Solving Resource-Constrained Scheduling Problems

  • Paweł SitekEmail author
  • Jarosław Wikarek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


Constrained scheduling problems are common in manufacturing, project management, transportation, supply chain management, software engineering, computer networks etc. Multiple binary and integer decision variables representing the allocation of resources to activities and numerous specific constraints on these variables are typical components of the constraint scheduling problem modeling. With their increased computational complexity, the models are more demanding, particularly when methods of operations research (mathematical programming, network programming, dynamic programming) are used. By contrast, most resource-constrained scheduling problems can be easily modeled as instances of the constraint satisfaction problems (CSPs) and solved using constraint programming (CP) or others methods. In the CP-based environment the problem definition is separated from the methods and algorithms used to solve the problem. Therefore, a constraint-based approach to resource-constrained scheduling problems that combines an OR-based approach for problem solving and a CP-based approach for problem modeling is proposed. To evaluate the applicability and efficiency of this approach and its implementation framework, illustrative examples of resource-constrained scheduling problems are implemented separately for different environments.


Constraint programming Mathematical programming Resource-constrained scheduling problem Knowledge-based approach 


  1. 1.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)zbMATHGoogle Scholar
  2. 2.
    Joseph, Y.-T.L., Anderson, J.H.: Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Chapman & Hall/CRC, Boca Raton (2004). ISBN:1584883979Google Scholar
  3. 3.
    Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Węglarz, J.: Handbook on Scheduling. From Theory to Applications. Springer, Heidelberg (2007). ISBN:978-3-540-28046-0zbMATHGoogle Scholar
  4. 4.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc, New York (2006)zbMATHGoogle Scholar
  5. 5.
    Apt, K., Wallace, M.: Constraint Logic Programming Using Eclipse. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  6. 6.
    Milano, M., Wallace, M.: Integrating operations research constraint programming. Ann. Oper. Res. 175(1), 37–76 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming, a new approach to integrate CP and MIP. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Bocewicz, G., Banaszak, Z.: Declarative approach to cyclic steady states space refinement: periodic processes scheduling. Int. J. Adv. Manuf. Technol. 67(1–4), 137–155 (2013)CrossRefGoogle Scholar
  9. 9.
    Sitek, P., Wikarek, J.: A hybrid approach to the optimization of multiechelon systems. Math. Probl. Eng., Article ID 925675. Hindawi Publishing Corporation (2014). doi: 10.1155/2014/925675
  10. 10.
    Sitek, P., Nielsen, I.E., Wikarek, J.: A hybrid multi-agent approach to the solving supply chain problems. Procedia Comput. Sci. 35, 1557–1566 (2014). Knowledge-Based and Intelligent Information & Engineering Systems 18th Annual Conference, KES-2014CrossRefGoogle Scholar
  11. 11.
    Sitek, P., Wikarek, J.: A hybrid framework for the modelling and optimisation of decision problems in sustainable supply chain management. Int. J. Prod. Res. 1–18 (2015). doi: 10.1080/00207543.2015.1005762
  12. 12.
    Sitek, P.: A hybrid CP/MP approach to supply chain modelling, optimization and analysis. In: Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Systems, vol. 2, pp. 1345–1352 (2014). doi: 10.15439/2014F89
  13. 13.
    Guyon, O., Lemaire, P., Pinson, Ă., Rivreau, D.: Solving an integrated job-shop problem with human resource constraints. Ann. Oper. Res. 213(1), 147–171 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource constraints: classification and complexity. Discrete Appl. Math. 5, 11–24 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lawrence, S.R., Morton, T.E.: Resource-constrained multi-project scheduling with tardy costs: comparing myopic bottleneck, and resource pricing heuristics. Eur. J. Oper. Res. 64(2), 168–187 (1993)CrossRefzbMATHGoogle Scholar
  16. 16.
    Eclipse - The Eclipse Foundation open source community website. Accessed 20 Apr 2016
  17. 17.
    SCIP. Accessed 20 Apr 2016
  18. 18.
    Toth, P., Vigo, D.: Models, relaxations and exact approaches for the capacitated vehicle routing problem. Discrete Appl. Math. 123(1–3), 487–512 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Coelho, J., Vanhoucke, M.: Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. Eur. J. Oper. Res. 213, 73–82 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, J., Liu, C.: Fuzzy constraint logic programming with answer set semantics. In: Zhang, Z., Siekmann, J. (eds.) KSEM 2007. LNCS, vol. 4798, pp. 52–60. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76719-0_9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Information SystemsKielce University of TechnologyKielcePoland

Personalised recommendations