Multiagent Cooperation for Decision-Making in the Car-Following Behavior

  • Anouer BennajehEmail author
  • Fahem Kebair
  • Lamjed Ben Said
  • Samir Aknine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


This paper presents a decision-making model for determining the velocity and safety distance values basing-on anticipation of the simulation parameters. Thus, this paper is composed of two parts. In the first one, we used a bi-level bi-objective modeling to address the problem of decision-making with two objectives, which are, maximize the safety distance and maximize the velocity, in order to define a link between the increase of velocity and the road safety in the car-following behavior. In the second part, we resolve our modeling basing-on a multi-agent cooperation approach by applying of the Tabu search algorithm. The simulation results showing the advantages of our approach, such as, the use of the multi-agent cooperation approach reflects the high number of tested solutions in a very short search time, which guarantees the high quality of selected solution for each simulation step.


Car-following behavior Safe distance model Bi-objectives modeling Decision-making Multiagent system Tabu search algorithm 


  1. 1.
    Arnaud, D., René, M., Sylvain, P., Stéphane, E.: A behavioral multi-agent model for road traffic simulation. Eng. Appl. Artif. Intell. 21, 1443–1454 (2008)CrossRefGoogle Scholar
  2. 2.
    Bajeh, A.O., Abolarinwa, K.O.: Optimization: a comparative study of genetic and Tabu search algorithms. Int. J. Comput. Appl. (0975–8887) 31(5) (2011)Google Scholar
  3. 3.
    Barcelo, J., Ferrer, J., Grau, R., Florian, M., Chabini, E.: A route based version of the AIMSUN2 micro-simulation model. In: 2nd World Congree on ITS, Yokohama (1995)Google Scholar
  4. 4.
    Chen, Y.-L., Wang, C.-A.: Vehicle safety distance warning system: a novel algorithm for vehicle safety distance calculating between moving cars, 1550-2252/$25.00 ©16 IEEE (2007)Google Scholar
  5. 5.
    Gipps, P.G.: A behavioural car following model for computer simulation. Transp. Res. B 15(2), 105–111 (1981)CrossRefGoogle Scholar
  6. 6.
    Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 0899-1 499/89/0103-0190 $01.25 (1989)Google Scholar
  7. 7.
    Hao, J.K., Galinier, P., Habib, M.: Méthaheuristiques pour l’optimisation combinatoire et l’affectation sous contraintes. Revue d’Intelligence Artificielle, Vol: No. 1999 (1999)Google Scholar
  8. 8.
    ITE: Transportation and Traffic Engineering Handbook, 2nd Edn. Institute of Transportation Engineers, Prentice-Hall, Inc. New Jersey (1982)Google Scholar
  9. 9.
    Kometani, E., Sasaki, T.: Dynamic behaviour of traffic with a nonlinear spacing-speed relationship. In: Proceedings of the Symposium on Theory of Traffic Flow, Research Laboratories, General Motors, New York, pp. 105–119 (1959)Google Scholar
  10. 10.
    Liu, R., Van, V.D., Wating, D.P.: DRACULA: dynamic route assignment combining user learning and microsimulation. In: Proceedings of PTRC Summer Annual Conference, Seminar E, pp. 143–152 (1995)Google Scholar
  11. 11.
    Pacheco, J., Marti, R.: Tabu search for a multi-objective routing problem. J. Oper. Res. Soc. 57(1), 29–37 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Qiang, L., Lunhui, X., Zhihui, C., Yanguo, H.: Simulation analysis and study on car-following safety distance model based on braking process of leading vehicle. In: Proceedings of the 8th World Congress on Intelligent Control and Automation, 978-1-61284-700-9/11/$26.00 ©2011 IEEE (2011)Google Scholar
  13. 13.
    Wilson, R.E.: An analysis of Gipps’s car-following model of highway traffic. IMA J. Appl. Math. 66, 509–537 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)CrossRefGoogle Scholar
  15. 15.
    Yang, D., Zhu, L.L., Yu, D., Yang, F., Pu, Y.: An enhanced safe distance car-following model. J. Shanghai Jiaotong Univ. (Sci.) 19(1), 115–122 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anouer Bennajeh
    • 1
    Email author
  • Fahem Kebair
    • 1
  • Lamjed Ben Said
    • 1
  • Samir Aknine
    • 2
  1. 1.SOIE, Institut Supérieur de Gestion de Tunis-ISGTUniversité de TunisBardo, TunisTunisia
  2. 2.LIRIS, Université Claude Bernard Lyon 1-UCBLVilleurbanne CedexFrance

Personalised recommendations