Data Warehouses Federation as a Single Data Warehouse

  • Rafał KernEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


In this paper author presents an experiment, which shows that it is possible to form a federation of data warehouses that may simulate effectively one, “super” data warehouse. There is no need to create complete ETL tool to load data from source data warehouses into one, dedicated data warehouse. Good relations between global schema and local schemas extracted during schema integration are indispensable to create an effective federation.


Data warehouses Federation Data integration 


  1. 1.
    Berger, S., Schrefl, M.: From federated databases to a federated data warehouse system. In: Proceedings of the 41st Annual Hawaii International Conference on System Sciences, HICSS 2008, pp. 394–404 (2008)Google Scholar
  2. 2.
    Dong, X.L., Berti-Equille, L., Srivastava, D.: Data fusion: resolving conflicts from multiple sources. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 64–76. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Fan, W., Lu, H., Madnick, S.E., Cheung, D.: Discovering and reconciling value conflicts for numerical data integration. Inf. Syst. 26(8), 635–656 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jindal, R., Acharya, A.: Federated data warehouse architecture. White paper, Wipro Technologies (2003)Google Scholar
  5. 5.
    Kern, R., Ryk, K., Nguyen, N.T.: A framework for building logical schema and query decomposition in data warehouse federations. In: Jedrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 612–622. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Kern, R., Stolarczyk, T., Nguyen, N.T.: A formal framework for query decomposition and knowledge integration in data warehouse federations. Expert Syst. Appl. 40(7), 2592–2606 (2013)CrossRefGoogle Scholar
  7. 7.
    Kern, R., Dobrowolski, G., Nguyen, N.T.: A method for response integration in federated data warehouses. In: Camacho, D., Kim, S.-W., Trawiński, B. (eds.) New Trends in Computational Collective Intelligence. Studies in Computational Intelligence, vol. 572, pp. 63–73. Springer, Switzerland (2015)Google Scholar
  8. 8.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the Twentyfirst ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2002, pp. 233–246 (2002)Google Scholar
  9. 9.
    Motro, A., Anokhin, P.: Fusionplex: resolution of data inconsistencies in the integration of heterogeneous information sources. Inf. Fusion 7(2), 176–196 (2006)CrossRefGoogle Scholar
  10. 10.
    Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Advanced Information and Knowledge Processing. Springer, New York (2007)Google Scholar
  11. 11.
    Chau, V.T.N., Nguyen Hua Phung, V., Tran, T.N.: Making kernel-based vector quantization robust and effective for incomplete educational data clustering. Vietnam J. Comput. Sci. 3(2), 93–102 (2016)CrossRefGoogle Scholar
  12. 12.
    Waddington, R.: An Architected Approach to Integrated Information. White paper, Kalido (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of InformaticsWroclaw University of TechnologyWroclawPoland

Personalised recommendations