User Authentication Through Keystroke Dynamics as the Protection Against Keylogger Attacks

  • Adrianna Kozierkiewicz-HetmańskaEmail author
  • Aleksander Marciniak
  • Marcin Pietranik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


This paper addresses an authentication’s scheme based on behavioural biometric method which is users’ keystroke style. During an initial interaction with some system a proposed method identifies user’s typing pattern and eventually creates a search template that will be further used during the authentication. It is based on an encryption of random characters into a typed password by injecting a set of emulated keystrokes when the actual typing occurs. In a decoding phase, the algorithm searches for characters for which the user’s typing time is the most suitable within the assigned typing template. The article contains an overview of the developed method along with an analysis of its usability and an experimental evaluation based on assumed criteria of the false acceptance rate (FAR), the false rejection rate (FRR) and the equal error rate (EER). The obtained results have been compared with the existing method.


  1. 1.
    Alpar, O.: Keystroke recognition in user authentication using ANN based RGB histogram technique. Eng. Appl. Artif. Intell. 32, 213–217 (2014)CrossRefGoogle Scholar
  2. 2.
    Alsultan, A., Warwick, K.: Keystroke dynamics authentication: a survey of free-text methods. Int. J. Comput. Sci. Issues 10(4), 1–10 (2013)Google Scholar
  3. 3.
    Bajaj, S., Kaur, S.: Typing speed analysis of human for password protection (based on keystrokes dynamics). Int. J. Innovative Technol. Exploring Eng. (IJITEE) 3(2), 88–91 (2013)Google Scholar
  4. 4.
    Banerjee, S.P., Woodard, D.L.: Biometric authentication and identification using keystroke dynamics: a survey. J. Pattern Recogn. Res. 7(1), 116–139 (2012)CrossRefGoogle Scholar
  5. 5.
    Gunawardhane, S.D.W., De Silva, P.M., Kulathunga, D.S.B., Arunatileka, S.M.K.D.: Non-invasive human stress detection using key stroke dynamics and pattern variations. In: 2013 International Conference on Advances in ICT for Emerging Regions (ICTer), Colombo, pp. 240–247 (2013). doi: 10.1109/ICTer.2013.6761185
  6. 6.
    De Magalhães, P., dos Santos, H.: An improved statistical keystroke dynamics algorithm. In: Proceedings of the IADIS MCCSIS 2005 (2005)Google Scholar
  7. 7.
    Marciniak, A.: Uwierzytelnianie użytkowników oparte o analizę dynamiki pisania na klawiaturze. Master thesis (2016, in Polish)Google Scholar
  8. 8.
    Monaco, J.V., Bakelman, N., Cha, S.H., Tappert, C.C.: Recent advances in the development of a long-text-input keystroke biometric authentication system for arbitrary text input. In: Intelligence and Security Informatics Conference (EISIC) 2013, pp. 60–66 (2013). doi: 10.1109/EISIC.2013.16
  9. 9.
    Monrose, F., Rubin, A.D.: Keystroke dynamics as a biometric for authentication. Future Gener. Comput. Syst. 16(4), 351–359 (2000)CrossRefGoogle Scholar
  10. 10.
    Nag, A.K., Roy, A., Dasgupta, D.: An adaptive approach towards the selection of multi-factor authentication. In: IEEE Symposium Series on Computational Intelligence, pp. 463–472 (2015). doi: 10.1109/SSCI.2015.75
  11. 11.
    Rahman, K.A., Balagani, K.S., Phoha, V.V.: Snoop-forge-replay attacks on continuous verification with keystrokes. IEEE Trans. Inf. Forensics Secur. 8(3), 528–541 (2013). doi: 10.1109/TIFS.2013.2244091 CrossRefGoogle Scholar
  12. 12.
    Trojahn, M., Ortmeier, F.: Toward mobile authentication with keystroke dynamics on mobile phones and tablets. In: 2013 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 697–702 (2013). doi: 10.1109/WAINA.2013.36
  13. 13.
    Trojahn, M., Arndt, F., Ortmeier, F.: Authentication with time features for keystroke dynamics on touchscreens. In: De Decker, B., Dittmann, J., Kraetzer, C., Vielhauer, C. (eds.) CMS 2013. LNCS, vol. 8099, pp. 197–199. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40779-6_17 CrossRefGoogle Scholar
  14. 14.
    Wu, T., Guo, J., Rice, L.: Method and system for biometric keyboard. U.S. Patent No. 8,134,449 (2012)Google Scholar
  15. 15.
    Zack, R.S., Tappert, C.C., Cha, S.-H.: Performance of a long-text-input keystroke biometric authentication system using an improved k-nearest-neighbor classification method. In: Proceedings of 2010 4th IEEE International Conference Theory Applications and Systems (BTAS), pp. 1–6 (2010). doi: 10.1109/BTAS.2010.5634492
  16. 16.
    Vural, E., Huang, J., Hou, D., Schuckers, S.: Shared research dataset to support development of keystroke authentication (2014). doi: 10.1109/BTAS.2014.6996259 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adrianna Kozierkiewicz-Hetmańska
    • 1
    Email author
  • Aleksander Marciniak
    • 1
  • Marcin Pietranik
    • 1
  1. 1.Department of Information SystemsWroclaw University of Science and TechnologyWrocławPoland

Personalised recommendations