Generic Ensemble-Based Representation of Global Cardiovascular Dynamics for Personalized Treatment Discovery and Optimization

  • Olga SenyukovaEmail author
  • Valeriy GavrishchakaEmail author
  • Maria Sasonko
  • Yuri Gurfinkel
  • Svetlana Gorokhova
  • Nikolay Antsygin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


Accurate and timely diagnostics does not warranty successful treatment outcome due to subtle personal differences, especially in the case of complex or rare cardiac abnormalities. A proper representation of global cardio dynamics could be used for quick and objective matching of the current patient to former cases with known treatment plans and outcomes. Previously we have proposed the approach for heart rate variability (HRV) analysis based on ensembles of different measures discovered by boosting algorithms. Unlike original HRV techniques, ensemble-based metrics could be much more accurate in early detection of short-lived or emerging abnormal regimes and slow changes in long-range dynamic patterns. Here we demonstrate that the same metrics applied to long HRV time series, collected by Holter monitors or other means, could provide effective characterization of global cardiovascular dynamics for decision support in discovery and optimization of personalized treatments.


Computer-aided diagnostics Heart rate variability analysis Ensemble learning Personalized medicine 


  1. 1.
    Costa, M., Goldberger, A.L., Peng, C.-K.: Multiscale entropy analysis of physiologic time series. Phys. Rev. Lett. E 71, 021906 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gavrishchaka, V.V., Senyukova, O.V.: Robust algorithmic detection of cardiac pathologies from short periods of RR data. In: Pham, T., Jain, L.C. (eds.) Knowledge-Based Systems in Biomedicine. SCI, vol. 450, pp. 137–153. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Gavrishchaka, V., Senyukova, O., Davis, K.: Multi-complexity ensemble measures for gait time series analysis: application to diagnostics, monitoring and biometrics. In: Signal and Image Analysis for Biomedical and Life Sciences. Advances in Experimental Medicine and Biology, vol. 823, pp. 107–126. Springer International Publishing, Cham (2015)Google Scholar
  5. 5.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  6. 6.
    Makowiec, D., Dudkowska, A., Zwierz, M., et al.: Scale invariant properties in heart rate signals. Acta Phys. Pol. B 37(5), 1627–1639 (2006)Google Scholar
  7. 7.
    Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, J., Kanto, A.: Dynamics of market correlations: taxonomy and portfolio analysis. Phys. Rev. E 68, 056110 (2003)CrossRefGoogle Scholar
  8. 8.
    Peng, C.-K., Havlin, S., Stanley, E.H., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)CrossRefGoogle Scholar
  9. 9.
    Senyukova, O., Gavrishchaka, V.: Ensemble decomposition learning for optimal utilization of implicitly encoded knowledge in biomedical applications. In: IASTED International Conference on Computational Intelligence and Bioinformatics, pp. 69–73. ACTA Press, Calgary (2011)Google Scholar
  10. 10.
    Senyukova, O., Gavrishchaka, V., Koepke, M.: Universal multi-complexity measures for physiological state quantification in intelligent diagnostics and monitoring systems. In: Pham, T.D., Ichikawa, K., Oyama-Higa, M., Coomans, D., Jiang, X. (eds.) ACBIT 2013. CCIS, vol. 404, pp. 76–90. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Task Force of the European Society of Cardiology, the North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996)Google Scholar
  12. 12.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, San Diego (1998)zbMATHGoogle Scholar
  13. 13.
    Tumminello, M., Lillo, F., Mantegna, R.N.: Correlation, hierarchies, and networks in financial markets. J. Econ. Behav. Organ. 75, 40–58 (2010)CrossRefGoogle Scholar
  14. 14.
    Voss, A., Schulz, S., Schroederet, R., et al.: Methods derived from nonlinear dynamics for analysing heart rate variability. Philosophical Trans. Royal Soci. A 367, 277–296 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Olga Senyukova
    • 1
    Email author
  • Valeriy Gavrishchaka
    • 2
    Email author
  • Maria Sasonko
    • 3
  • Yuri Gurfinkel
    • 3
  • Svetlana Gorokhova
    • 3
  • Nikolay Antsygin
    • 4
  1. 1.Faculty CMCLomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Department of PhysicsWest Virginia UniversityMorgantownUSA
  3. 3.Research Clinical Center of JSC Russian RailwaysMoscowRussian Federation
  4. 4.Children’s City Hospital #1St. PetersburgRussian Federation

Personalised recommendations