The Results of a Complex Analysis of the Modified Pratt-Yaskorskiy Performance Metrics Based on the Two-Dimensional Markov-Renewal-Process

  • Viktor GeringerEmail author
  • Dmitry Dubinin
  • Alexander Kochegurov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


The paper presents the results of a quantitative estimation of the edge detection quality using modified Pratt-Yaskorskiy criterion, as well as generalization and adaptation of both approaches based on the generalized quality criterion as part of «CS sF» stochastic simulation software package. The reference images are approximated by the two-dimensional high rise renewal stream offering the stationarity properties with no aftereffects and ordinariness. The efficiency of the proposed metrics is considered for three edging algorithms (Marr-Hildreth, ISEF and Canny) at different levels of the additive normal noise. The estimated errors of the first and second kind are given, which allow referring to the efficiency of the proposed generalized quality criterion.


Stochastic computer simulation Research on models Reference image Edge detection Quality metrics Performance evaluation Comparison of algorithms 



We express our sincere gratitude and appreciation to our families for their delicacy, support and understanding. We express special gratitude to technologist Helene Geringer for her assistance in refining the style of the paper, as well as for preparation of the illustrative material.


  1. 1.
    Abdou, I.A., Pratt, W.: Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. IEEE 67(5), 753–763 (1979). (ISSN 0018–9219)CrossRefGoogle Scholar
  2. 2.
    Yaskorsky, A.V.: Kriterii otsenki kachestva raboty detektorov konturov. [Criteria for the performance evaluation of the edge detectors]. Optoelectron. Instrum. Data Process. 3, 127–128 (1987). (In Russ.)Google Scholar
  3. 3.
    Dubinin, D., Geringer, V., Kochegurov, A., Reif, K.: An efficient method to evaluate the performance of edge detection techniques by a two-dimensional semi-Markov model. In: CICA 2014, pp. 1–7. IEEE Press, Orlando (2014). doi: 10.1109/CICA.2014.7013248
  4. 4.
    Nguyen, T.B., Zhou, D.: Contextual and non-contextual performance evaluation of edge detectors. Pattern Recogn. Lett. 21(9), 805–816 (2000)CrossRefGoogle Scholar
  5. 5.
    Boaventura, I. Gonzaga, A.: Method to evaluate the performance of edge detector, In: Proceedings of SIBGRAPI 2009, XXIInd Brazilian Symposium on Computer Graphics and Image Processing, pp. 1–3 (2009). Rio de Janeiro (ISSN: 2176–0853)Google Scholar
  6. 6.
    Dubinin, D., Geringer, V., Kochegurov, A., Reif, K.: Ein stochastischer algorithmus zur bildgenerierung durch einen zweidimensionalen markoff-erneuerungsprozess Oldenbourg Wissenschaftsverlag. at- Automatisierungstechnik 62(1), 57–64 (2014)CrossRefGoogle Scholar
  7. 7.
    Dubinin, D., Geringer, V., Kochegurov, A.: A particular method of modelling stochastic intensity fields by isotropic, one-step Markov chains, tm – Technisches Messen, no. 5, pp. 271–276. Scientific Publisher, Oldenbourg (2012)Google Scholar
  8. 8.
    Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. Lond. B 207, 187–217 (1980)CrossRefGoogle Scholar
  9. 9.
    Shen, J., Castan, S.: An optimal linear operator for edge detection. In: IEEE Proceedings of the Conference on Vision and Pattern Recognition, pp. 109–114 (1986)Google Scholar
  10. 10.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  11. 11.
    Dubinin, D., Geringer, V., Kochegurov, A., Reif, K.: Bundled software for simulation modeling. In: Proceedings of the International Symposium on Signals, Circuits and Systems (ISSCS 2013), pp. 1–4. ISSCS Press, Romania, (IEEE Catalog Number: CFP13816-CDR) (2013)Google Scholar
  12. 12.
    Dubinin, D., Kochegurov, A., Laevski, V.: Metodika modelirovaniya sluchaynykh yarkostnykh poley, approksimirovannykh odnorodnymi odnourovnevymi markovskimi tsepyami. [A particular method of generating stochastic intensity fields by two-dimensional semi-Markov model]. J. Inf. Sci. 4(12), 35–40 (2011). ICM & MG SB RAS Publisher, Novosibirsk. (In Russ.)Google Scholar
  13. 13.
    Laevski, V.: Algorithm of one-level Markovian fields construction. Bull. Tomsk Polytech. Univ. 309(8), 32–36 (2006). (ISSN 1684-8519)Google Scholar
  14. 14.
    Buimov, A.: Korrelyacionno- ekstremal‘naya obrabotka izobrazhenij. [Correlation-Extremal Processing of Images]. In: Tarasenko, V. (ed.), p. 132. TSU Publisher, Tomsk (1987). (In Russ.)Google Scholar
  15. 15.
    Peli, E.: Contrast in complex images. J. Opt. Soc. Am. 7(10), 2032–2040 (1990). doi: 10.1364/JOSAA.7.002032 CrossRefGoogle Scholar
  16. 16.
    Chidiac, H., Ziou, D.: Classification of image edges. In: Vision Interface 1999, pp. 17–24. Troise-Rivieres, Canada (1999)Google Scholar
  17. 17.
    Denisov, V., Dubinin, D., Kochegurov, A., Geringer, V.: Rezul’taty issledovaniya kompleks-nogo metoda otsenki kachestva okonturivaniya na osnove dvukhmernogo tochechnogo potoka vosstanovleniya. [The results of the investigation of the integrated performance evaluation method of edge detection based on the two-dimensional renewal process]. In: Vestnik SibGAU, no. 2, pp. 300–309 (2015). (In Russ.)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Viktor Geringer
    • 1
    Email author
  • Dmitry Dubinin
    • 2
  • Alexander Kochegurov
    • 3
  1. 1.Faculty of EngineeringBaden-Wuerttemberg Cooperative State UniversityFriedrichshafenGermany
  2. 2.Tomsk State University of Control Systems and RadioelectronicsTomskRussian Federation
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussian Federation

Personalised recommendations