Fuzzy Cognitive Maps for Long-Term Prognosis of the Evolution of Atmospheric Pollution, Based on Climate Change Scenarios: The Case of Athens

  • Vardis-Dimitris Anezakis
  • Konstantinos DermetzisEmail author
  • Lazaros Iliadis
  • Stefanos Spartalis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


Air pollution is related to the concentration of harmful substances in the lower layers of the atmosphere and it is one of the most serious problems threatening the modern way of life. Determination of the conditions that cause maximization of the problem and assessment of the catalytic effect of relative humidity and temperature are important research subjects in the evaluation of environmental risk. This research effort describes an innovative model towards the forecasting of both primary and secondary air pollutants in the center of Athens, by employing Soft Computing Techniques. More specifically, Fuzzy Cognitive Maps are used to analyze the conditions and to correlate the factors contributing to air pollution. According to the climate change scenarios till 2100, there is going to be a serious fluctuation of the average temperature and rainfall in a global scale. This modeling effort aims in forecasting the evolution of the air pollutants concentrations in Athens as a consequence of the upcoming climate change.


Fuzzy Cognitive Maps Air pollutants Climate change models Soft Computing Techniques 


  1. 1.
    Amer, M., Jetter, A.J., Daim, T.U.: Scenario planning for the national wind energy sector through fuzzy cognitive maps. In: Technology Management in the IT-Driven Services (PICMET) Proceedings of PICMET 2013, pp. 2153–2162 (2013)Google Scholar
  2. 2.
    Bougoudis, Ι., Demertzis, Κ., Iliadis, L.: HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. Neural Comput. Appl. 27, 1191–1206 (2015). doi: 10.1007/s00521-015-1927-7. SpringerCrossRefGoogle Scholar
  3. 3.
    Bougoudis, Ι., Demertzis, Κ., Iliadis, L.: Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning. In: Integrated Computer-Aided Engineering, Vol. Preprint. NO. Preprint, pp. 1–13. IOS Press (2015). doi: 10.3233/ICA-150505
  4. 4.
    Bougoudis, I., Iliadis, L., Papaleonidas, A.: Fuzzy inference ANN ensembles for air pollutants modeling in a major urban area: the case of Athens. Eng. Appl. Neural Netw. Commun. Comput. Inf. Sci. 459, 1–14 (2014)Google Scholar
  5. 5.
    Fons, S., Achari, G., Ross, T.: A fuzzy cognitive mapping analysis of the impacts of an eco-industrial park. J. Intell. Fuzzy Syst. 15(2), 75–88 (2004)Google Scholar
  6. 6.
    Gordaliza, J.A., Florez, R.E.V.: Using fuzzy cognitive maps to support complex environmental issues learning. In: Proceedings of New Perspectives in Science Education Conference, 2nd edn. (2013)Google Scholar
  7. 7.
    Griffies, S.M.: Fundamentals of Ocean Models, p. 496. Princeton University Press, Princeton (2004)Google Scholar
  8. 8.
    Griffies, S.M., Gnanadesikan, A., Pacanowski, R., Larichev, V., Dukowicz, J.K., Smith, R.D.: Isopycnal mixing in a z-coordinate ocean model. J. Phys. Oceanogr. 28, 805–830 (1998)CrossRefGoogle Scholar
  9. 9.
    Griffies, S.M.: Gent–McWilliams skew flux. J. Phys. Oceanogr. 28, 831–841 (1998)CrossRefGoogle Scholar
  10. 10.
    Large, W., Danasbogulu, G., McWilliams, J., Gent, P., Bryan, F.O.: Equatorial circulation of a global ocean climate model with anisotropic viscosity. J. Phys. Oceanogr. 31, 518–536 (2001)CrossRefGoogle Scholar
  11. 11.
    Lock, P., Brown, R., Bush, R., Martin, M., Smith, B.: A new boundary layer mixing scheme. Scheme description and single-column model tests. Mon. Weather Rev. 128, 3187–3199 (2000)CrossRefGoogle Scholar
  12. 12.
    Luiz, J., Muller, E.: Greenhouse gas emission reduction under the kyoto protocol: the South African example. Int. Bus. Econ. Res. J. 7, 75–92 (2008)Google Scholar
  13. 13.
    Marco, F., Chalabi, Z., Foss, M.: Assessing framing assumptions in quantitative health impact assessments: a housing intervention example. Environ. Int. 59, 133–140 (2013)CrossRefGoogle Scholar
  14. 14.
    Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive maps research during the last decade. IEEE Trans. Fuzzy Syst. 21(1), 66–79 (2013)CrossRefGoogle Scholar
  15. 15.
    Paschalidou, A.: University of Ioannina, Ph.d. thesis development of box model for the air pollution forecasting in medium size cities (2007). (in Greek)Google Scholar
  16. 16.
    Pathinathan, T., Ponnivalavan, K.: The study of hazards of plastic pollution using induced fuzzy cognitive maps (IFCMS). J. Comput. Algorithm 3, 671–674 (2014)Google Scholar
  17. 17.
    Salmeron, J.L., Froelich, W.: Dynamic optimization of fuzzy cognitive maps for time series forecasting. Knowl. Based Syst. 105, 29–37 (2016). ForthcomingCrossRefGoogle Scholar
  18. 18.
    Vidal, R., Salmeron, J.L., Mena, A., Chulvi, V.: Fuzzy cognitive map-based selection of TRIZ trends for eco-innovation of ceramic industry products. J. Cleaner Prod. 107, 202–214 (2015)CrossRefGoogle Scholar
  19. 19.
    Winton, M.: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol. 17, 525–531 (2000)CrossRefGoogle Scholar
  20. 20.
    Zhang, H., Song, J., Su, C., He, M.: Human attitudes in environmental management: fuzzy cognitive maps and policy option simulations analysis for a coal-mine ecosystem in China. J. Environ. Manag. 115, 227–234 (2013)CrossRefGoogle Scholar
  21. 21.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vardis-Dimitris Anezakis
    • 1
  • Konstantinos Dermetzis
    • 1
    Email author
  • Lazaros Iliadis
    • 1
  • Stefanos Spartalis
    • 2
  1. 1.Lab of Forest-Environmental Informatics and Computational Intelligence, Department of Forestry and Management of the Environment and Natural ResourcesDemocritus University of ThraceN OrestiadaGreece
  2. 2.Laboratory of Computational Mathematics, Department of Production and Management Engineering, School of EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations