Advertisement

A Novel Approach to Identify Factor Posing Pronunciation Disorders

  • Naim TerbehEmail author
  • Mounir Zrigui
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)

Abstract

Literature seems rich with approaches which are based on the features contained in the speech signal and natural language processing techniques to detect vocal pathologies in human speeches. From the literature, we can mention also that several factors (vocal pathology, non-native speaker, psychological state, age …) can pose pronunciation disorders [10]. But to our knowledge, no work has treated pathological speech to identify factor posing pronunciation disorders. The current work consists in introducing an original approach based on the forced alignment score [8] to identify the factor posing mispronunciations contained in the Arabic speech. We distinguish two main factors: the pronunciation disorders can be from native speakers with vocal pathology or from non-native speakers who do not master Arabic-phoneme pronunciation. The results are encouraging; we attain an identification rate of 95 %. Biologists and computer scientists can benefit from our proposed approach to design high performance systems of vocal pathology diagnostic.

Keywords

Pronunciation disorders Forced alignment score Vocal pathology Non-native speakers 

Notes

Acknowledgments

We would like to benefit from this opportunity to express my deepest regards to all members of the evaluation research committee in the ICCCI scientific conference. We would like also to extend our advance thanks to Mr. Mounir ZRIGUI for his valuable advices and encouragement.

References

  1. 1.
    Terbeh, N., Maraoui, M., Zrigui, M.: Probabilistic approach for detection of vocal pathologies in the Arabic speech. In: Gelbukh, A. (ed.). LNCS, vol. 9042, pp. 606–616. Springer, Heidelberg (2015)Google Scholar
  2. 2.
    Alghamdi, M., Almuhtasib, H., Elshafei, M.: Arabic phonological rules. King Saud Univ. J. Comput. Sci. Inf. 16, 1–25 (2004)Google Scholar
  3. 3.
    Terbeh, N., Labidi, M., Zrigui, M.: Automatic speech correction: a step to speech recognition for people with disabilities. In: ICTA 2013, Hammamet-Tunisia, 23–26 October 2013 (2013)Google Scholar
  4. 4.
    Terbeh, N., Zrigui, M.: Vers la Correction Automatique de la Parole Arabe. In: Citala 2014, Oujda-Morocco, 26–27 November 2014 (2014)Google Scholar
  5. 5.
    Patane, G., Russo, M.: The enhanced LBG algorithm. Neural Netw. 14(9), 1219–1237 (2001)CrossRefGoogle Scholar
  6. 6.
    Bréhilin, L., Gascuel, O.: Modèles de Markov caches et apprentissage de sequencesGoogle Scholar
  7. 7.
    Majidnezhad, V., Kheidorov, I.: An ANN-based method for detecting vocal fold pathology. Int. J. Comput. Appl. 62(7), 1–4 (2013)Google Scholar
  8. 8.
    Jurafsky, D., Ward, W., Zhang, B., Herold, K., Yu, X., Zhang, S.: What kind of pronunciation variation is hard for triphones to model? In: ICASSP 2001, Salt Lake City, UT, 7–11 May 2001Google Scholar
  9. 9.
    Majidnezhad, V., Kheidorov, I.: A HMM-based method for vocal fold pathology diagnosis. IJCSI Int. J. Comput. Sci. Issues 9(6), 135–138 (2012). No. 2Google Scholar
  10. 10.
    Kim, J., Kumar, N., Tsiartas, A., Li, M., Narayanan, S.: Intelligibility classification of pathological speech using fusion of multiple subsystems. In: Proceedings of Interspeech, Portland, Oregon, USA, pp. 534–537 (2012)Google Scholar
  11. 11.
    Paquet, P.: L’utilisation des réseaux de neurones artificiels en finance. Document de recherche n° 1997-1 (1997)Google Scholar
  12. 12.
    Archaux, C., Laanaya, H., Martin, A., Khenchaf, A.: An SVM based churn detector in prepaid mobile telephony (2004)Google Scholar
  13. 13.
    Kukharchik, P., Martynov, D., Kheidorov, I., Kotov, O.: Vocal fold pathology detection using modified wavelet-like features and support vector machines. In: 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, 3–7 September 2007Google Scholar
  14. 14.
    Damerval, C.: Ondelettes pour la détection de caractéristiques en traitement d’images. Doctoral thesis, Mai 2008Google Scholar
  15. 15.
    Plante, F., Christian, B.-V.: Détection acoustique des pathologies phonatoires chez l’enfant. Doctoral thesis (1993)Google Scholar
  16. 16.
    Terbeh, N., Zrigui, M.: Vocal pathologies detection and mispronounced phonemes identification: case of Arabic continuous speech. In: LREC 2016, Portorož-Slovenia, 23–28 May 2016 (2016)Google Scholar
  17. 17.
  18. 18.
  19. 19.
    Blanc-Brude, T.: Intégration de commandes vocales dans un environnement d’apprentissage par l’action: enjeux ergonomiques. Doctoral dissertation, Grenoble 1 (2004)Google Scholar
  20. 20.
    Biadsy, F., Hirschberg, J., Habash, N.: Spoken Arabic dialect identification using phonotactic modeling. In: Proceedings of the EACL 2009 Workshop on Computational Approaches to Semitic Languages, pp. 53–61. Association for Computational Linguistics (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.LaTICE Laboratory-Monastir UnitMonastirTunisia

Personalised recommendations