What Makes Your Writing Style Unique? Significant Differences Between Two Famous Romanian Orators

  • Mihai DascaluEmail author
  • Daniela Gîfu
  • Stefan Trausan-Matu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


This paper introduces a novel, in-depth approach of analyzing the differences in writing style between two famous Romanian orators, based on automated textual complexity indices for Romanian language. The considered authors are: (a) Mihai Eminescu, Romania’s national poet and a remarkable journalist of his time, and (b) Ion C. Brătianu, one of the most important Romanian politicians from the middle of the 18th century. Both orators have a common journalistic interest consisting in their desire to spread the word about political issues in Romania via the printing press, the most important public voice at that time. In addition, both authors exhibit writing style particularities, and our aim is to explore these differences through our ReaderBench framework that computes a wide range of lexical and semantic textual complexity indices for Romanian and other languages. The used corpus contains two collections of speeches for each orator that cover the period 1857–1880. The results of this study highlight the lexical and cohesive textual complexity indices that reflect very well the differences in writing style, measures relying on Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) semantic models.


Writing style Textual complexity for Romanian language Comparable corpora Famous orators 



This work has been partially funded by the 2008-212578 LTfLL FP7 project, as well as the EC H2020 project RAGE (Realising and Applied Gaming Eco-System); No. 644187.


  1. 1.
    de Saussure, F.: Cours de Linguistique Générale. Payot, Paris (1999)Google Scholar
  2. 2.
    Bo, L., Gaussier, E., Morin, E., Hazem, A.: Degré de comparabilité, extraction lexicale bilingue et recherche d’information interlingue. In: Conf´erence sur le Traitement Automatique des Langues Naturelles, vol. 1, pp. 211–222. LIRMM Montpellier, Montpellier (2011)Google Scholar
  3. 3.
    Morin, E., Daille, B.: Comparabilité de corpus et fouille terminologique multilingue. Traitement Automatique des Langues 47(1), 113–136 (2006)Google Scholar
  4. 4.
    Gîfu, D.: Contrastive diachronic study on romanian language. In: FOI 2015, pp. 296–310. Institute of Mathematics and Computer Science, Academy of Sciences of Moldova (2015)Google Scholar
  5. 5.
    Aijmer, K., Altenberg, B., Johansson, M.: Languages in contrast: papers from a symposium on text-based cross-linguistic studies, Lund 4–5 March 1994, vol. 88. Lund studies in English (1996)Google Scholar
  6. 6.
    Vianu, T.: Arta prozatorilor români. Ed. Contemporană, Bucharest (1941)Google Scholar
  7. 7.
    Coteanu, I.: Stilistica Funcțională a Limbii Române, vol. 81. Editura Academiei, Bucharest (1993)Google Scholar
  8. 8.
    Ibrăileanu, G.: Spiritul Critic în Cultura Românească. Tipografia Moldova, Iaşi (2001)Google Scholar
  9. 9.
    Brătianu, I.C.: Memoire sur l’Empire d’Autriche dans la question d’Orient, Paris, France (1855)Google Scholar
  10. 10.
    Brătianu, I.C.: Memoire sur la situation de la Moldo–Valachie depuis la Traite de Paris, Paris, France (1857)Google Scholar
  11. 11.
    Dascalu, M.: Analyzing Discourse and Text Complexity for Learning and Collaborating. SCI, vol. 534. Springer, Cham (2014)Google Scholar
  12. 12.
    Dascalu, M., Gifu, D.: Evaluating the complexity of online Romanian press. In: 11th International Conference “Linguistic Resources and Tools for Processing the Romanian Language”, Iasi, Romania, pp. 149–162 (2015)Google Scholar
  13. 13.
    Dascalu, M., Dessus, P., Bianco, M., Trausan-Matu, S., Nardy, A.: Mining texts, learner productions and strategies with ReaderBench. In: Peña-Ayala, A. (ed.) Educational Data Mining. SCI, vol. 524, pp. 335–377. Springer, Cham (2014)CrossRefGoogle Scholar
  14. 14.
    Dascalu, M., Stavarache, L.L., Dessus, P., Trausan-Matu, S., McNamara, D.S., Bianco, M.: ReaderBench: an integrated cohesion-centered framework. In: Conole, G., Klobucar, T., Rensing, C., Konert, J., Lavoué, E. (eds.) EC-TEL 2015. LNCS, vol. 9307, pp. 505–508. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24258-3_47 Google Scholar
  15. 15.
    National Governors Association Center for Best Practices & Council of Chief State School Officers: Common Core State Standards. Authors, Washington D.C. (2010)Google Scholar
  16. 16.
    Eggins, S., Martin, J.R.: Genres and register of discourse. In: van Dijk, T.A. (ed.) Discourse as Structure and Process (Discourse Studies – A Multidisciplinary Introduction), vol. 1, pp. 231–232. Sage Publications, London (1997)Google Scholar
  17. 17.
    Biber, D.: A textual comparison of British and American Writing. Am. Speech 62, 99–119 (1987)CrossRefGoogle Scholar
  18. 18.
    Rosetti, A., Cazacu, B., Onu, L.: Istoria limbii române literare. Editura Minerva, Bucureşti (1971)Google Scholar
  19. 19.
    Iordan, I.: Stilistica Limbii Române. Editura Ştiințifică, Bucureşti (1975)Google Scholar
  20. 20.
    Sala, M.: De la latină la română. Limba română, vol. 1. Editura Univers Enciclopedic & Academia Română, Bucureşti (1998)Google Scholar
  21. 21.
    Guţu-Romalo, V.: Aspecte ale evoluţiei limbii române, Vol. Repere. Editura Humanitas Educaţional, Bucureşti (2005)Google Scholar
  22. 22.
    Slotnick, H.: Toward a theory of computer essay grading. J. Educ. Meas. 9(4), 253–263 (1972)CrossRefGoogle Scholar
  23. 23.
    Wresch, W.: The imminence of grading essays by computer—25 years later. Comput. Compos. 10(2), 45–58 (1993)CrossRefGoogle Scholar
  24. 24.
    Nelson, J., Perfetti, C., Liben, D., Liben, M.: Measures of text difficulty: Testing their predictive value for grade levels and student performance. Council of Chief State School Officers, Washington, DC (2012)Google Scholar
  25. 25.
    Shannon, C.E.: Prediction and entropy of printed English. Bell Syst. Tech. J. 30, 50–64 (1951)CrossRefzbMATHGoogle Scholar
  26. 26.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J., 27, 379–423 & 623–656 (1948)Google Scholar
  27. 27.
    Gervasi, V., Ambriola, V.: Quantitative assessment of textual complexity. In: Barbaresi, M.L. (ed.) Complexity in Language and Text, pp. 197–228. Plus, Pisa (2002)Google Scholar
  28. 28.
    McNamara, D.S., Graesser, A.C., Louwerse, M.M.: Sources of text difficulty: Across the ages and genres. In: Sabatini, J.P., Albro, E., O’Reilly, T. (eds.) Measuring up: Advances in how we assess reading ability, pp. 89–116. R&L Education, Lanham (2012)Google Scholar
  29. 29.
    van Dijk, T.A., Kintsch, W.: Strategies of Discourse Comprehension. Academic Press, New York (1983)Google Scholar
  30. 30.
    Crossley, S.A., Dascalu, M., Trausan-Matu, S., Allen, L., McNamara, D.S.: Document Cohesion Flow: Striving towards Coherence. In: 38th Annual Meeting of the Cognitive Science Society. Cognitive Science Society, Philadelphia (in press)Google Scholar
  31. 31.
    Dascalu, M., Trausan-Matu, S., McNamara, D.S., Dessus, P.: ReaderBench – automated evaluation of collaboration based on cohesion and dialogism. Int. J. Comput.-Support. Collaborative Learn. 10(4), 395–423 (2015)CrossRefGoogle Scholar
  32. 32.
    Dascalu, M., Dessus, P., Trausan-Matu, Ş., Bianco, M., Nardy, A.: ReaderBench, an environment for analyzing text complexity and reading strategies. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 379–388. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  33. 33.
    Trausan-Matu, S., Dascalu, M., Dessus, P.: Textual complexity and discourse structure in computer-supported collaborative learning. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 352–357. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Foltz, P.W., Kintsch, W., Landauer, T.K.: An analysis of textual coherence using latent semantic indexing. In: 3rd Annual Conference of the Society for Text and Discourse, Boulder, CO (1993)Google Scholar
  35. 35.
    Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the Latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychol. Rev. 104(2), 211–240 (1997)CrossRefGoogle Scholar
  36. 36.
    Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  37. 37.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(4–5), 993–1022 (2003)zbMATHGoogle Scholar
  38. 38.
    Blei, D.M., Lafferty, J.: Topic models. In: Srivastava, A., Sahami, M. (eds.) Text Mining: Classification, Clustering, and Applications, pp. 71–93. Chapman & Hall/CRC, London (2009)Google Scholar
  39. 39.
    Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Ind. Appl. Math.: Ser. B, Numer. Anal. 2(2), 205–224 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kotz, S., Balakrishnan, N., Johnson, N.L.: Dirichlet and Inverted Dirichlet Distributions. Continuous Multivariate Distributions, vol. 1, Models and Applications, pp. 485–527. Wiley, New York (2000)Google Scholar
  41. 41.
    Dascalu, M., Trausan-Matu, S., Dessus, P., McNamara, D.S.: Discourse cohesion: a signature of collaboration. In: 5th International Learning Analytics & Knowledge Conference (LAK 2015), pp. 350–354. ACM, Poughkeepsie (2015)Google Scholar
  42. 42.
    Tufiș, D., Barbu Mititelu, V., Bozianu, L., Mihăilă, C.: Romanian wordnet: new developments and applications. In: 3rd Global Wordnet Conference 2006 (GWC 2006), Jeju Island, Korea, pp. 337–344 (2006)Google Scholar
  43. 43.
    Stevens, J.P.: Applied multivariate statistics for the social sciences. Lawrence Erblaum, Mahwah (2002)zbMATHGoogle Scholar
  44. 44.
    Garson, G.D.: Multivariate GLM, MANOVA, and MANCOVA. Statistical Associates Publishing, Asheboro (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mihai Dascalu
    • 1
    Email author
  • Daniela Gîfu
    • 2
  • Stefan Trausan-Matu
    • 1
  1. 1.Computer Science DepartmentUniversity Politehnica of BucharestBucureștiRomania
  2. 2.Faculty of Computer Science“Alexandru Ioan Cuza” UniversityIaşiRomania

Personalised recommendations