A Novel Interaction Protocol of a Multiagent System for the Study of Alternative Decisions

  • Florin LeonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9875)


The process of decision making is one of the core components of a cognitive system. In this paper, a simple, deterministic protocol for agent interaction in a multiagent system is proposed, which is based on passive stigmergy and can exhibit complex interactions, although in the end it stabilizes. This system can be used to study the effect of alternative decisions. A statistical analysis of several scenarios is provided, in which a perturbation, i.e. a single or a small set of alternative decisions, can change the final utility of an agent from minimum to maximum.


Multiagent systems Decision making Alternative decisions Perturbations 


  1. 1.
    Azuma, R., Daily, M., Furmanski, C.: A review of time critical decision making models and human cognitive processes. In: Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, Montana, USA (2006). doi: 10.1109/aero.2006.1656041
  2. 2.
    Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J.D.: The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced choice tasks. Psychol. Rev. 113(4), 700–765 (2006)CrossRefGoogle Scholar
  3. 3.
    Hawkins, G., Brown, S.D., Steyvers, M., Wagenmakers, E.J.: Context effects in multi-alternative decision making: empirical data and a bayesian model. Cogn. Sci. 36, 498–516 (2012). doi: 10.1111/j.1551-6709.2011.01221.x CrossRefGoogle Scholar
  4. 4.
    Holland, O.E.: Multiagent systems: lessons from social insects and collective robotics. Adaptation, Coevolution and Learning in Multiagent Systems: Papers from the 1996 AAAI Spring Symposium, pp. 57–62. AAAI Press, Menlo Park (1996)Google Scholar
  5. 5.
    Leon, F.: A multiagent system generating complex behaviours. In: Bădică, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 154–164. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40495-5_16 Google Scholar
  6. 6.
    Leon, F.: Analysis of behavior stability in a multiagent system. In: Frank, T.D. (ed.) New Research on Collective Behavior, Psychology Research Progress. Nova Publishers, New York (2016)Google Scholar
  7. 7.
    Leon, F.: Design and evaluation of a multiagent interaction protocol generating behaviours with different levels of complexity. Neurocomputing 146(SI), 173–186 (2014). doi: 10.1016/j.neucom.2014.04.058 CrossRefGoogle Scholar
  8. 8.
    Leon, F.: Stabilization methods for a multiagent system with complex behaviours. Comput. Intell. Neurosci., Article ID 236285, 20 pages (2015). doi: 10.1155/2015/236285
  9. 9.
    Przybyła-Kasperek, M., Wakulicz-Deja, A.: Global decision-making in multi-agent decision-making system with dynamically generated disjoint clusters. Appl. Soft Comput. 40, 603–615 (2016)CrossRefzbMATHGoogle Scholar
  10. 10.
    Reches, S., Talman, S., Kraus, S.: A statistical decision-making model for choosing among multiple alternatives. In: Proceedings of AAMAS 2007, Honolulu, Hawaii, USA (2007)Google Scholar
  11. 11.
    Rustichini, A.: Dual or unitary system? Two alternative models of decision making. Cogn. Affect. Behav. Neurosci. 8(4), 355–362 (2008). doi: 10.3758/cabn.8.4.355 CrossRefGoogle Scholar
  12. 12.
    Stüttgen, P., Boatwright, P., Monroe, R.T.: A satisficing choice model. Mark. Sci. 31(6), 878–899 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering“Gheorghe Asachi” Technical University of IaşiIaşiRomania

Personalised recommendations