Combating Misinformation Online: Identification of Variables and Proof-of-Concept Study

  • Milan Dordevic
  • Fadi SafieddineEmail author
  • Wassim Masri
  • Pardis Pourghomi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9844)


The spread of misinformation online is specifically amplified by use of social media, yet the tools for allowing online users to authenticate text and images are available though not easily accessible. The authors challenge this view suggesting that corporations’ responsible for the development of browsers and social media websites need to incorporate such tools to combat the spread of misinformation. As a step stone towards developing a formula for simulating spread of misinformation, the authors ran theoretical simulations which demonstrate the unchallenged spread of misinformation which users are left to authenticate on their own, as opposed to providing the users means to authenticate such material. The team simulates five scenarios that gradually get complicated as variables are identified and added to the model. The results demonstrate a simulation of the process as proof-of-concept as well as identification of the key variables that influence the spread and combat of misinformation online.


Misinformation Information Simulation Social media Authentication 


  1. 1.
    Lee, K., Mahmud, J., Chen, J., Zhou, M., Nichols, J.: Who will retweet this? automatically identifying and engaging strangers on twitter to spread information. In: The 19th international conference on Intelligent User Interfaces, pp. 247–256. ACM (2014)Google Scholar
  2. 2.
    Hoang, T.A., Lim, E.P.: Virality and susceptibility in information diffusions. In: ICWSM (2012)Google Scholar
  3. 3.
    Jin, F., Dougherty, E., Saraf, P., Cao, Y., Ramakrishnan, N.: Epidemiological modeling of news and rumors on twitter. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis, p. 8. ACM (2013)Google Scholar
  4. 4.
    Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in social networks. In: Proceedings of the 20th International Conference on World Wide Web, pp. 665–674. ACM (2011)Google Scholar
  5. 5.
    Safieddine, F., Masri, W., Pourghomi, P.: Corporate responsibility in combating online misinformation. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 7(2), 126–132 (2016)Google Scholar
  6. 6.
    Dutton, W.H., Blank, G., Gorseli, D.: Cultures of the internet: the internet in britain. Oxford Internet Survey 2013 Report, University of Oxford (2013)Google Scholar
  7. 7.
    World Economic Forum Report.: Top 10 trends of 2014: the rapid spread of misinformation online (2014)Google Scholar
  8. 8.
    Libicki, M.C.: Conquest in Cyberspace: National Security and Information Warfare. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  9. 9.
    Karlova, N.A., Fisher, K.E.: Plz RT: a social diffusion model of misinformation and disinformation for understanding human information behaviour. Inf. Res 18(1), 1–17 (2013)Google Scholar
  10. 10.
    Kumar, K.K., Geethakumari, G.: Detecting misinformation in online social networks using cognitive psychology. Hum. Centric Comput. Inf. Sci. 4(1), 1–22 (2014)CrossRefGoogle Scholar
  11. 11.
    Lewandowsky, S., Ecker, U.K., Seifert, C.M., Schwarz, N., Cook, J.: Misinformation and its correction continued influence and successful debiasing. Psychol. Sci. Public Interest 13(3), 106–131 (2012)CrossRefGoogle Scholar
  12. 12.
    De Neys, W., Cromheeke, S., Osman, M.: Biased but in doubt: conflict and decision condence. PLoSONE 6, e15954 (2011)CrossRefGoogle Scholar
  13. 13.
    Bettencourt, L.M., Cintrón-Arias, A., Kaiser, D.I., Castillo-Chávez, C.: The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models. Phys. A Stat. Mech. Appl. 364, 513–536 (2006)CrossRefGoogle Scholar
  14. 14.
    Martin, J.: How to do a reverse Google Image search on Android or iPhone. PC Advisor (online) (2016)Google Scholar
  15. 15.
    Buchholz, F.: On the role of file system metadata in digital forensics. Digit. Invest. 1(4), 298–309 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Castiglione, A., Cattaneo, G., De Santis, A.: A forensic analysis of images on online social networks. In: IEEE Conference, pp. 679–684 (2011)Google Scholar
  17. 17.
    Wikipedia Contributors.: Wikipedia: Version 1.0 Editorial Team. Wikipedia, The Free Encyclopedia.
  18. 18.
    Osmond, J., Darlington, Y.: Reflective analysis: techniques for facilitating reflection. Aust. Soc. Work 58, 3–14 (2015)CrossRefGoogle Scholar
  19. 19.
    Altmann, J.: Observational study of behavior: sampling methods. Behaviour 49(3), 227–266 (1974)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Milan Dordevic
    • 1
  • Fadi Safieddine
    • 1
    Email author
  • Wassim Masri
    • 1
  • Pardis Pourghomi
    • 1
  1. 1.The American University of the Middle EastDasmanKuwait

Personalised recommendations