Advertisement

Understanding the Adoption of Smart Wearable Devices to Assist Healthcare in China

  • Shang GaoEmail author
  • Xuemei Zhang
  • Shunqin Peng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9844)

Abstract

With the development and advancement of information communication technology, smart wearable devices are playing a more and more important role in peoples’ daily lives. This study aims to investigate the adoption of smart wearable devices to assist healthcare in China. Based on the previous technology diffusion theories (e.g., TAM, IDT), a research model with ten research hypotheses was proposed in this research. The research model was empirically tested with a sample of 180 users of smart wearable devices in China. The results indicated that seven of the ten research hypotheses were significantly supported. The most significant determinant for users’ attitude towards smart wearable devices was trust. However, personal characteristics did not have a significant positive impact on both users’ attitude and behavior intention to use smart wearable devices.

Keywords

Adoption TAM Trust Smart wearable devices 

References

  1. 1.
    Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50(2), 179–211 (1991)CrossRefGoogle Scholar
  2. 2.
    Bagozzi, R.P.: The role of measurement in theory construction and hypothesis testing: toward a holistic model. In: Ferrell, O.C., Brown, S.W., Lamb, C.W. (eds.) Conceptual and Theoretical Developments in Marketing, pp. 15–32 (1979)Google Scholar
  3. 3.
    Bagozzi, R.P., Yi, Y.: Specification, evaluation, and interpretation of structural equation models. J. Acad. Mark. Sci. 40(1), 8–34 (2012)CrossRefGoogle Scholar
  4. 4.
    Bakıcı, T., Almirall, E., Wareham, J.: A smart city initiative: the case of Barcelona. J. Knowl. Econ. 4(2), 135–148 (2013)CrossRefGoogle Scholar
  5. 5.
    Benbasat, I., Barki, H.: Quo vadis TAM. J. Assoc. Inf. Syst. 8(4), 211–218 (2007)Google Scholar
  6. 6.
    Chan, M., Estève, D., Fourniols, J.-Y., et al.: Smart wearable systems: current status and future challenges. Artif. Intell. Med. 56(3), 137–156 (2012)CrossRefGoogle Scholar
  7. 7.
    Davis, F.D.: Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Q. 13(3), 319–340 (1989)CrossRefGoogle Scholar
  8. 8.
    DeLone, W.H., McLean, E.R.: Information systems success: the quest for the dependent variable. Inf. Syst. Res. 3(1), 60–95 (1992)CrossRefGoogle Scholar
  9. 9.
    Donthu, N., Garcia, A.: The internet shopper. J. Advertising Res. 39(3), 52 (1999)Google Scholar
  10. 10.
    Featherman, M.S., Pavlou, P.A.: Predicting e-services adoption: a perceived risk facets perspective. Int. J. Hum. Comput. Stud. 59(4), 451–474 (2003)CrossRefGoogle Scholar
  11. 11.
    Fishbein, M., Ajzen, I.: Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley, Boston (1975)Google Scholar
  12. 12.
    Gao, S., Krogstie, J., Chen, Z., et al.: Lifestyles and mobile services adoption in China. Int. J. E-Bus. Res. (IJEBR) 10(3), 36–53 (2014)CrossRefGoogle Scholar
  13. 13.
    Gao, S., Krogstie, J., Siau, K.: Adoption of mobile information services: an empirical study. Mob. Inf. Syst. 10(2), 147–171 (2014)Google Scholar
  14. 14.
    Gao, S., Krogstie, J., Siau, K.: Developing an instrument to measure the adoption of mobile services. Mob. Inf. Syst. 7(1), 45–67 (2011)Google Scholar
  15. 15.
    Gao, S., Krogstie, J., Zang, Z.: The effect of flow experience and social norms on the adoption of mobile games in China. Int. J. Mob. Hum. Comput. Interact. (IJMHCI) 8(1), 83–102 (2016)Google Scholar
  16. 16.
    Gao, S., Yang, Y., Krogstie, J.: The adoption of smartphones among older adults in China. In: Liu, K., Nakata, K., Li, W., Galarreta, D. (eds.) ICISO 2015. IFIP AICT, vol. 449, pp. 112–122. Springer, Heidelberg (2015)Google Scholar
  17. 17.
    Gao, S., Zang, Z.: An empirical examination of users’ adoption of mobile advertising in China. Inf. Dev. 32(2), 203–215 (2016)CrossRefGoogle Scholar
  18. 18.
    Gao, Y., Li, H., Luo, Y.: An empirical study of wearable technology acceptance in healthcare. Ind. Manag. Data Syst. 115(9), 1704–1723 (2015)CrossRefGoogle Scholar
  19. 19.
    Gefen, D.: TAM or just plain habit: a look at experienced. online shoppers. J. End User Comput. 15(3), 1–13 (2003)CrossRefGoogle Scholar
  20. 20.
    Gefen, D., Karahanna, E., Straub, D.W.: Trust and TAM in online shopping: an integrated model. MIS Q. 27(1), 51–90 (2003)Google Scholar
  21. 21.
    Johnson, R.A., Hignite, M.A.: Applying the technology acceptance model to the WWW. Acad. Inf. Manag. Sci. J. 3(2), 130–142 (2000)Google Scholar
  22. 22.
    Kim, K.J., Shin, D.-H.: An acceptance model for smart watches: implications for the adoption of future wearable technology. Internet Res. 25(4), 527–541 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kolodinsky, J.M., Hogarth, J.M., Hilgert, M.A.: The adoption of electronic banking technologies by US consumers. Int. J. Bank Mark. 22(4), 238–259 (2004)CrossRefGoogle Scholar
  24. 24.
    Legris, P., Ingham, J., Collerette, P.: Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag. 40(3), 191–204 (2003)CrossRefGoogle Scholar
  25. 25.
    Liebermann, Y., Paroush, J.: Economic aspects of diffusion models. J. Econ. Bus. 34(1), 95–100 (1982)CrossRefGoogle Scholar
  26. 26.
    Lu, J., Yu, C.-S., Liu, C., et al.: Technology acceptance model for wireless internet. Internet Res. 13(3), 206–222 (2003)CrossRefGoogle Scholar
  27. 27.
    Malhotra, N.K., Kim, S.S., Patil, A.: Common method variance in IS research: a comparison of alternative approaches and a reanalysis of past research. Manag. Sci. 52(12), 1865–1883 (2006)CrossRefGoogle Scholar
  28. 28.
    Menschner, P., Prinz, A., Koene, P., et al.: Reaching into patients’ homes–participatory designed AAL services. Electron. Mark. 21(1), 63–76 (2011)CrossRefGoogle Scholar
  29. 29.
    Moon, J.-W., Kim, Y.-G.: Extending the TAM for a World-Wide-Web context. Inf. Manag. 38(4), 217–230 (2001)CrossRefGoogle Scholar
  30. 30.
    Pavlou, P.A.: Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model. Int. J. Electron. Commer. 7(3), 101–134 (2003)Google Scholar
  31. 31.
    Robinson, J.P., Shaver, P.R., Wrightsman, L.S.: Criteria for Scale Selections and Evaluation. Academic Press, San Diego (1991)CrossRefGoogle Scholar
  32. 32.
    Rogers, E.M.: The Diffusion of Innovations. Free Press, New York (1995)Google Scholar
  33. 33.
    Van der Heijden, H.: Factors influencing the usage of websites: the case of a generic portal in The Netherlands. Inf. Manag. 40(6), 541–549 (2003)CrossRefGoogle Scholar
  34. 34.
    Venkatesh, V., Morris, M.G., Ackerman, P.L.: A longitudinal field investigation of gender differences in individual technology adoption decision-making processes. Organ. Behav. Hum. Decis. Process. 83(1), 33–60 (2000)CrossRefGoogle Scholar
  35. 35.
    Venkatesh, V., Morris, M.G., Davis, G.B., et al.: User acceptance of information technology: toward a unified view. MIS Q. 27(3), 425–478 (2003)Google Scholar
  36. 36.
    Wright, R., Keith, L.: Wearable technology: if the tech fits, wear it. J. Electron. Resour. Med. Libr. 11(4), 204–216 (2014)CrossRefGoogle Scholar
  37. 37.
    Wu, J.-H., Wang, S.-C.: What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Inf. Manag. 42(5), 719–729 (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.School of BusinessÖrebro UniversityÖrebroSweden
  2. 2.School of Business AdministrationZhongnan University of Economics and LawWuhanChina

Personalised recommendations