Advertisement

An Empirical Study of Facebook Adoption Among Young Adults in a Northeastern State of India: Validation of Extended Technology Acceptance Model (TAM)

  • Mohammad A. A. Alryalat
  • Nripendra P. RanaEmail author
  • Hiren K. D. Sarma
  • Jafar A. Alzubi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9844)

Abstract

The purpose of this paper is to explore the adoption of a social networking site called Facebook in context of a landlocked and one of the least populous states in India. The adoption of Facebook is examined by considering technology acceptance model (TAM) as a basic model along with additional constructs such as subjective norm and perceived trust in it. The data were collected from 202 young adults from couple of degree level colleges from one of the least populous and landlocked states called Sikkim in India. The empirical outcomes provided the positive significant connections between nine hypothesised relationships among seven constructs. The article also discusses the resulting theoretical contributions for Facebook adoption and discusses practical implications of Facebook adoption for Facebook providers and users.

Keywords

Facebook Adoption Usage Young adults India TAM 

References

  1. 1.
    Koc, M., Gulyagci, S.: Facebook addiction among Turkish college students: the role of psychological health, demographic, and usage characteristics. Cyber Psychol. Behav. Soc. Network. 16(4), 279–284 (2013)CrossRefGoogle Scholar
  2. 2.
    Murray, K.E., Waller, R.: Social networking goes abroad. Int. Educ. 16(3), 56–59 (2007)Google Scholar
  3. 3.
    Hargittai, E., Litt, E.: The tweet smell of celebrity success: explaining variation in Twitter adoption among a diverse group of young adults. New Media Soc. 13(5), 824–842 (2011)CrossRefGoogle Scholar
  4. 4.
    Harris, J.K., Mueller, N.L., Snider, D.: Social media adoption in local health departments nationwide. Am. J. Public Health 103(9), 1700–1707 (2013)CrossRefGoogle Scholar
  5. 5.
    PTI: Facebook user base has now climbed to 125 million users in India. Press Trust of India (2015). http://tech.firstpost.com/news-analysis/facebook-user-base-has-now-climbed-to-125-million-users-in-india-272186.html
  6. 6.
    Ahmed, S., Diesner, J.: Information network analysis to understand the evolution of online social networking sites in the context of India, Pakistan, and Bangladesh. Growth 3(3/4), 1–6 (2012)Google Scholar
  7. 7.
    Kumar, N.: Facebook for self-empowerment? A study of Facebook adoption in urban India. New Media Soc. pp. 1–16 (2014). DOI: 10.1177/1461444814543999 Google Scholar
  8. 8.
    Lee, Y., Kozar, K.A., Larsen, K.R.: The technology acceptance model: past, present, and future. Commun. Assoc. Inf. Syst. 12(1), 752–780 (2003)Google Scholar
  9. 9.
    Fishbein, M., Ajzen, I.: Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley, Reading (1975)Google Scholar
  10. 10.
    Davis, F.D.: A Technology Acceptance Model for Empirically Testing New End-user Information Systems: Theory and Results. Doctoral dissertation. Massachusetts: Sloan School of Management, Massachusetts Institute of Technology (1986)Google Scholar
  11. 11.
    Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 45(2), 186–204 (2000)CrossRefGoogle Scholar
  12. 12.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319–340 (1989)CrossRefGoogle Scholar
  13. 13.
    Rauniar, R., Rawski, G., Yang, J., Jhonson, B.: Technology acceptance model (TAM) and social media usage: an empirical study on Facebook. J. Enterp. Inf. Manag. 27(1), 6–30 (2014)CrossRefGoogle Scholar
  14. 14.
    Schepers, J., Wetzels, M.: A meta-analysis of the technology acceptance model: investigating subjective norm and moderation effects. Inf. Manag. 44(1), 90–103 (2007)CrossRefGoogle Scholar
  15. 15.
    Legris, P., Ingham, J., Collerette, P.: Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag. 40(3), 191–204 (2003)CrossRefGoogle Scholar
  16. 16.
    Porter, C.E., Donthu, N.: Using the technology acceptance model to explain how attitudes determine Internet usage: the role of perceived access barriers and demographics. J. Bus. Res. 59(9), 999–1007 (2006)CrossRefGoogle Scholar
  17. 17.
    Teo, T.: The impact of subjective norm and facilitating conditions on pre-service teachers’ attitude toward computer use: a structural equation modeling of an extended technology acceptance model. J. Educ. Comput. Res. 40(1), 89–109 (2009)CrossRefGoogle Scholar
  18. 18.
    Molla, A., Licker, P.S.: e-Commerce systems success: an attempt to extend and respecify the DeLone and McLean model of IS success. J. Electron. Commer. Res. 2(4), 131–141 (2001)Google Scholar
  19. 19.
    Huang, Y.M., Huang, Y.M., Huang, S.H., Lin, Y.T.: A ubiquitous English vocabulary learning system: evidence of active/passive attitudes vs. usefulness/ease-of-use. Comput. Educ. 58(1), 273–282 (2012)CrossRefGoogle Scholar
  20. 20.
    Lu, J., Yao, J.E., Yu, C.S.: Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. J. Strateg. Inf. Syst. 14(3), 245–268 (2005)CrossRefGoogle Scholar
  21. 21.
    Li, X., Hess, T.J., Valacich, J.S.: Using attitude and social influence to develop an extended trust model for information systems. ACM SIGMIS Database 37(2–3), 108–124 (2006)CrossRefGoogle Scholar
  22. 22.
    Papadopoulou, P.: Applying virtual reality for trust-building e-commerce environments. Virtual Reality 11(2), 107–127 (2007)CrossRefGoogle Scholar
  23. 23.
    Ajzen, I., Fishbein, M.: Understanding Attitudes and Predicting Social Behavior. Prentice-Hall, Englewood Cliffs (1980)Google Scholar
  24. 24.
    Taylor, S., Todd, P.A.: Decomposition and crossover effects in the theory of planned behaviour: a study of consumer adoption. Int. J. Res. Mark. 12(2), 137–155 (1995)CrossRefGoogle Scholar
  25. 25.
    Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manag. Sci. 35(8), 982–1003 (1989)CrossRefGoogle Scholar
  26. 26.
    Anderson, J.C., Gerbing, D.W.: Structural equation modeling in practice: a review and recommended two-step approach. Psychol. Bull. 103(3), 411–423 (1988)CrossRefGoogle Scholar
  27. 27.
    Belanger, F., Carter, L.: Trust and risk in e-government adoption. J. Strateg. Inf. Syst. 17(2), 165–176 (2008)CrossRefGoogle Scholar
  28. 28.
    Netemeyer, R.G., Johnston, M.W., Burton, S.: Analysis of role conflict and role ambiguity in a structural equations framework. J. Appl. Psychol. 75(2), 148–157 (1990)CrossRefGoogle Scholar
  29. 29.
    Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18(1), 39–50 (1981)CrossRefGoogle Scholar
  30. 30.
    Chin, W.W., Todd, P.A.: On the use, usefulness, and ease of use of structural equation modeling in MIS research: a note of caution. MIS Q. 19(2), 237–246 (1995)CrossRefGoogle Scholar
  31. 31.
    Gefen, D.: e-commerce: the role of familiarity and trust. Omega Int. J. Manag. Sci. 28(6), 725–737 (2000)CrossRefGoogle Scholar
  32. 32.
    Steiger, J.H., Lind, J.C.: Statistically-Based Tests for the Number of Common Factors. Annual Spring Meeting of the Psychometric Society, Iowa City (1980)Google Scholar
  33. 33.
    Hoyle, R.H.: The Structural Equation Modeling Approach: Basic Concepts and Fundamental Issues. Sage Publications, Thousand Oaks (1995)Google Scholar
  34. 34.
    Bentler, P., Bonett, D.: Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 88(3), 588–606 (1980)CrossRefGoogle Scholar
  35. 35.
    Hu, L.T., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equat. Model. Multi. J. 6(1), 1–55 (1999)CrossRefGoogle Scholar
  36. 36.
    Mansumitrchai, S., Park, C.H., Chiu, C.L.: Factors underlying the adoption of social network: a study of Facebook users in South Korea. Int. J. Bus. Manag. 7(24), 138–153 (2012)CrossRefGoogle Scholar
  37. 37.
    Mazman, S.G., Usluel, Y.K.: Modeling educational usage of Facebook. Comput. Educ. 55(2), 444–453 (2010)CrossRefGoogle Scholar
  38. 38.
    Pedersen, P.E.: Adoption of mobile Internet services: an exploratory study of mobile commerce early adopters. J. Organ. Comput. Electron. Commer. 15(3), 203–222 (2005)Google Scholar
  39. 39.
    Ellison, N.B.: Social network sites: definition, history, and scholarship. J. Comput. Mediated Commun. 13(1), 210–230 (2007)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Hassanein, K., Head, M.: Manipulating social presence through the web interface and its impact on consumer attitude towards online shopping. Int. J. Hum Comput Stud. 64(12), 1230–1242 (2007)Google Scholar
  41. 41.
    Shin, D.H.: The effects of trust, security and privacy in social networking: a security-based approach to understand the pattern of adoption. Interact. Comput. 22(5), 428–438 (2010)CrossRefGoogle Scholar
  42. 42.
    Chu, S.C., Kim, Y.: Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. Int. J. Advert. 30(1), 47–75 (2011)CrossRefGoogle Scholar
  43. 43.
    Jarvenpaa, S.L., Knoll, K., Leidner, D.E.: Is anybody out there? Antecedents of trust in global virtual teams. J. Manag. Inf. Syst. 14(4), 29–64 (1998)CrossRefGoogle Scholar
  44. 44.
    Ridings, C.M., Gefen, D., Arinze, B.: Some antecedents and effects of trust in virtual communities. J. Strateg. Inf. Syst. 11(3/4), 271–295 (2002)CrossRefGoogle Scholar
  45. 45.
    Berthon, P., Pitt, L., Ewing, M., Carr, C.: L: Potential research space in MIS: a framework for envisioning and evaluating research replication, extension, and generation. Inf. Syst. Res. 13(4), 416–427 (2002)CrossRefGoogle Scholar
  46. 46.
    Cheung, C.M., Chiu, P.Y., Lee, M.K.: Online social networks: why do students use facebook? Comput. Hum. Behav. 27(4), 1337–1343 (2011)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Mohammad A. A. Alryalat
    • 1
  • Nripendra P. Rana
    • 2
    Email author
  • Hiren K. D. Sarma
    • 3
  • Jafar A. Alzubi
    • 1
  1. 1.Al-Balqa Applied UniversitySaltJordan
  2. 2.School of Management, Swansea University Bay CampusSwanseaUK
  3. 3.Department of Information TechnologySikkim Manipal Institute of TechnologySikkimIndia

Personalised recommendations