Advertisement

The Impact of Brand Actions on Facebook on the Consumer Mind-Set

  • Anatoli Colicev
  • Peter O’ConnorEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9844)

Abstract

Despite all the surrounding hype, it is still not clear exactly how social media affects consumer behavior. In an effort to contribute to the current debate on the effectiveness of social media marketing this study aims to theorize and empirically demonstrate how brand’s social media efforts influence a wide array of consumer mind-set metrics that underlie the consumer purchase decision-making process. Specifically, we relate key dimensions of a brand’s social media actions (intensity, valence and richness) to well established consumer mind-set metrics ranging from awareness through attitude to satisfaction. We hypothesize that brand actions’ intensity (more brand posts) with neutral valence and richer content will have a strong impact on the consumer mind-set. Using a unique data set that captures both social media and consumer mind-set metrics for multiple brands, we propose empirically testing our model with panel vector auto regression.

Keywords

Social media Mind-set metrics Panel vector auto regression 

References

  1. Aaker, D.: Measuring brand equity across products and markets. Calif. Manage. Rev. 38, 102–120 (1996)CrossRefGoogle Scholar
  2. Borah, A., Tellis, G.J.: Halo (spillover) effects in social media: do product recalls of one brand hurt or help rival brands? J. Mark. Res. 53(2), 143–160 (2015). Ahead of PCrossRefGoogle Scholar
  3. Colicev, A., O’Connor, P., Vinzi, V.E.: Is investing in social media really worth it? How brand actions and user actions influence brand value. Serv. Sci. 8, 152–168 (2016)CrossRefGoogle Scholar
  4. Daft, R.L., Lengel, R.H.: Organizational information requirements, media richness and structural design. Manage. Sci. 32, 554–571 (1986)CrossRefGoogle Scholar
  5. Dewan, S., Ramaprasad, J.: Social media, traditional media, and music sales. MIS Q. 2, 101–121 (2014)Google Scholar
  6. Goh, K., Heng, C., Lin, Z.: Social media brand community and consumer behavior: quantifying the relative impact of user-and marketer-generated content. Inf. Syst. Res. 24, 88–107 (2013)CrossRefGoogle Scholar
  7. Hanssens, D.M., Pauwels, K.H., Srinivasan, S., Vanhuele, M., Gokhan, Y.: Consumer attitude metrics for guiding marketing mix decisions. Mark. Sci. 33, 534–550 (2014)CrossRefGoogle Scholar
  8. Heggestuen, J., Danova, T.: Brand Presence: How To Choose Where To Be On Social Media [WWW Document]. Business Insider, Bangalore (2013)Google Scholar
  9. Hoffman, D.L., Fodor, M.: Can you measure the ROI of your social media marketing? MIT Sloan Manag. Rev. 52, 41–49 (2010)Google Scholar
  10. Holtz-Eakin, D., Newey, W., Rosen, H.S.: Estimating vector autoregressions with panel data. Econometrica 56, 1371–1395 (1988)CrossRefzbMATHGoogle Scholar
  11. Keller, K.L.: Strategic Brand Management, 3rd edn. Prentice Hall, Englewood Cliffs (2008)Google Scholar
  12. Lehmann, D.R., Keller, K.L., Farley, J.U.: The structure of survey-based brand metrics. J. Int. Mark. 16, 29–56 (2008)CrossRefGoogle Scholar
  13. Mangold, W.G., Faulds, D.J.: Social media: the new hybrid element of the promotion mix. Bus. Horiz. 52, 357–365 (2009)CrossRefGoogle Scholar
  14. Peters, K., Chen, Y., Kaplan, A.M., Ognibeni, B., Pauwels, K.H.: Social media metrics — a framework and guidelines for managing social media. J. Interact. Mark. 27, 281–298 (2013)CrossRefGoogle Scholar
  15. Rishika, R., Kumar, A., Janakiraman, R., Bezawada, R.: The effect of customers’ social media participation on customer visit frequency and profitability: an empirical investigation. Inf. Syst. Res. 24, 108–127 (2013)CrossRefGoogle Scholar
  16. Rogers, E.: Diffusion of Innovations. The Free Press of Glencoe, New York (1995)Google Scholar
  17. Rogers, E.: Diffusion of innovations, 1st edn. The Free Press of Glencoe, New York (1962)Google Scholar
  18. Smith, A.N., Fischer, E., Yongjian, C.: How does brand-related user-generated content differ across youtube, facebook, and twitter? J. Interact. Mark. 26, 102–113 (2012)CrossRefGoogle Scholar
  19. Srinivasan, S., Rutz, O.J., Pauwels, K.H.: Paths to and off purchase: quantifying the impact of traditional marketing and online consumer activity. J. Acad. Mark. Sci. 1, 1–14 (2015)Google Scholar
  20. Srinivasan, S., Vanhuele, M., Pauwels, K.H.: Mind-set metrics in market response models: an integrative approach. J. Mark. Res. 47(4), 672–684 (2010)CrossRefGoogle Scholar
  21. Steenkamp, J.-B.J., van Trijp, H.C.M., Trijp, H.Van: Attribute elicitation in marketing research: a comparison of three procedures. Mark. Lett. 8, 153–165 (1997)CrossRefGoogle Scholar
  22. The CMO Survey: CMO Survey Report: Highlights and Insights, Feburary 2016Google Scholar
  23. Wiesel, T., Pauwels, K.H., Arts, J.: Practice prize paper–marketing’s profit impact: quantifying online and off-line funnel progression. Mark. Sci. 30, 604–611 (2011)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Graduate School of BusinessNazarbayev UniversityAstanaKazakhstan
  2. 2.Essec Business SchoolCergy PontoiseFrance

Personalised recommendations