Skip to main content

Transcriptome Studies Reveal Altered Signaling Pathways in Cervical Cancer

  • Chapter
  • First Online:
Cervical Cancer

Abstract

Transcriptome analysis provides a global idea of the molecular mechanisms affected in different pathologies. Characterization of over- or under-expressed genes constitutes an initial step in this type of analysis. The integration of the information acquired by these global expression profiles regarding signaling pathways or organized modules that work according to specific cellular responses has made it possible for us to understand the development and progression of almost every type of neoplasia. In the case of cervical cancer, transcriptome studies have allowed us to comprehend the viral-mediated carcinogenic process, i.e., human papillomavirus (HPV). In spite of the great progress that has been accomplished regarding radiotherapy and chemotherapy, its impact in cervical cancer in limited; approximately 40% of the patients develop resistance to the conventional treatment schemes, and the disease will eventually recur, leading to the patient’s death. For this reason, knowing which signaling pathways present altered expression in this neoplasia opens a window of opportunity for those patients whose tumors display certain resistance to conventional treatment, further progression or even recurrence. In this chapter, we will summarize the main signaling pathways that are found to be altered in this neoplasia, pathways that have been described in various works in which the cervical cancer transcriptome was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  2. Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.

    Article  CAS  PubMed  Google Scholar 

  3. Clarke PA, te Poele R, Wooster R, Workman P. Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol. 2001;62:1311–36.

    Article  CAS  PubMed  Google Scholar 

  4. Yeoh E-J, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1:133–43.

    Article  CAS  PubMed  Google Scholar 

  5. Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52. doi:10.1038/35021093.

    Article  CAS  PubMed  Google Scholar 

  6. van t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6. doi:10.1038/415530a.

    Article  Google Scholar 

  7. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009. doi:10.1056/NEJMoa021967.

    Article  PubMed  Google Scholar 

  8. Augustin H, Hammerer PG, Graefen M, et al. Characterisation of biomolecular profiles in primary high-grade prostate cancer treated by radical prostatectomy. J Cancer Res Clin Oncol. 2003;129:662–8. doi:10.1007/s00432-003-0496-9.

    Article  PubMed  Google Scholar 

  9. Nannini M, Pantaleo MA, Maleddu A, et al. Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives. Cancer Treat Rev. 2009;35:201–9. doi:10.1016/j.ctrv.2008.10.006.

    Article  CAS  PubMed  Google Scholar 

  10. Roepman P, Wessels LFA, Kettelarij N, et al. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet. 2005;37:182–6. doi:10.1038/ng1502.

    Article  CAS  PubMed  Google Scholar 

  11. Fragoso-Ontiveros V, Maria Alvarez-Garcia R, Contreras-Paredes A, et al.. Gene expression profiles induced by E6 from non-European HPV18 variants reveals a differential activation on cellular processes driving to carcinogenesis. Virology. 2012. doi:10.1016/j.virol.2012.05.029.

    Google Scholar 

  12. Backsch C, Rudolph B, Steinbach D, et al. An integrative functional genomic and gene expression approach revealed SORBS2 as a putative tumour suppressor gene involved in cervical carcinogenesis. Carcinogenesis. 2011;32:1100–6. doi:10.1093/carcin/bgr093.

    Article  CAS  PubMed  Google Scholar 

  13. Pérez-Plasencia C, Vázquez-Ortiz G, López-Romero R, et al. Genome wide expression analysis in HPV16 cervical cancer: identification of altered metabolic pathways. Infect Agent Cancer. 2007;2:16. doi:10.1186/1750-9378-2-16.

    Article  PubMed  PubMed Central  Google Scholar 

  14. López J, Poitevin A, Mendoza-Martínez V, et al. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer. 2012;12:48. doi:10.1186/1471-2407-12-48.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wong YF, Selvanayagam ZE, Wei N, et al. Expression genomics of cervical cancer: molecular classification and prediction of radiotherapy response by DNA microarray. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9:5486–92.

    CAS  Google Scholar 

  16. Zempolich K, Fuhrman C, Milash B, et al. Changes in gene expression induced by chemoradiation in advanced cervical carcinoma: a microarray study of RTOG C-0128. Gynecol Oncol. 2008;109:275–9. doi:10.1016/j.ygyno.2008.01.027.

    Article  CAS  PubMed  Google Scholar 

  17. Borkamo ED, Schem B-C, Fluge O, et al. cDNA microarray analysis of serially sampled cervical cancer specimens from patients treated with thermochemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;75:1562–9. doi:10.1016/j.ijrobp.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  18. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5:749–59. doi:10.1038/nri1703.

    Article  CAS  PubMed  Google Scholar 

  19. Ruutu M, Peitsaro P, Johansson B, Syrjänen S. Transcriptional profiling of a human papillomavirus 33-positive squamous epithelial cell line which acquired a selective growth advantage after viral integration. Int J Cancer J Int Cancer. 2002;100:318–26. doi:10.1002/ijc.10455.

    Article  CAS  Google Scholar 

  20. Mahoney DJ, Cheung HH, Mrad RL, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A. 2008;105:11778–83. doi:10.1073/pnas.0711122105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng G, Dan W, Jun W, et al. Transcriptome profiling of the cancer and adjacent nontumor tissues from cervical squamous cell carcinoma patients by RNA sequencing. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2015; doi:10.1007/s13277-014-2963-0.

    Google Scholar 

  22. Uhlar CM, Whitehead AS. The kinetics and magnitude of the synergistic activation of the serum amyloid A promoter by IL-1 beta and IL-6 is determined by the order of cytokine addition. Scand J Immunol. 1999;49:399–404.

    Article  CAS  PubMed  Google Scholar 

  23. Lee HY, Kim M-K, Park KS, et al. Serum amyloid a stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem Biophys Res Commun. 2005;330:989–98. doi:10.1016/j.bbrc.2005.03.069.

    Article  CAS  PubMed  Google Scholar 

  24. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30. doi:10.1038/nrm3434.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Massagué J. TGFβ in cancer. Cell. 2008;134:215–30. doi:10.1016/j.cell.2008.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ikushima H, Miyazono K. TGF-β signal transduction spreading to a wider field: a broad variety of mechanisms for context-dependent effects of TGF-β. Cell Tissue Res. 2012;347:37–49. doi:10.1007/s00441-011-1179-5.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas JT, Oh ST, Terhune SS, Laimins LA. Cellular changes induced by low-risk human papillomavirus type 11 in keratinocytes that stably maintain viral episomes. J Virol. 2001;75:7564–71. doi:10.1128/JVI.75.16.7564-7571.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nees M, Geoghegan JM, Munson P, et al. Human papillomavirus type 16 E6 and E7 proteins inhibit differentiation-dependent expression of transforming growth factor-beta2 in cervical keratinocytes. Cancer Res. 2000;60:4289–98.

    CAS  PubMed  Google Scholar 

  29. Duffy CL, Phillips SL, Klingelhutz AJ. Microarray analysis identifies differentiation-associated genes regulated by human papillomavirus type 16 E6. Virology. 2003;314:196–205.

    Article  CAS  PubMed  Google Scholar 

  30. French D, Belleudi F, Mauro MV, et al. Expression of HPV16 E5 down-modulates the TGFbeta signaling pathway. Mol Cancer. 2013;12:38. doi:10.1186/1476-4598-12-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan F, Miao X, Quraishi I, et al. Gene expression changes during HPV-mediated carcinogenesis: a comparison between an in vitro cell model and cervical cancer. Int J Cancer J Int Cancer. 2008;123:32–40. doi:10.1002/ijc.

    Article  CAS  Google Scholar 

  32. Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25:435–57. doi:10.1007/s10555-006-9006-2.

    Article  CAS  PubMed  Google Scholar 

  33. Kloth JN, Fleuren GJ, Oosting J, et al. Substantial changes in gene expression of Wnt, MAPK and TNFalpha pathways induced by TGF-beta1 in cervical cancer cell lines. Carcinogenesis. 2005;26:1493–502. doi:10.1093/carcin/bgi110.

    Article  CAS  PubMed  Google Scholar 

  34. Toussaint-Smith E, Donner DB, Roman A. Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene. 2004;23:2988–95. doi:10.1038/sj.onc.1207442.

    Article  CAS  PubMed  Google Scholar 

  35. Noordhuis MG, Fehrmann RSN, Wisman GBA, et al. Involvement of the TGF-beta and beta-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:1317–30. doi:10.1158/1078-0432.CCR-10-2320.

    Article  CAS  Google Scholar 

  36. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80. doi:10.1016/j.cell.2006.10.018.

    Article  CAS  PubMed  Google Scholar 

  37. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99–109.

    Article  CAS  PubMed  Google Scholar 

  38. Shtutman M, Zhurinsky J, Simcha I, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Katoh M. WNT/PCP signaling pathway and human cancer (review). Oncol Rep. 2005;14:1583–8.

    CAS  PubMed  Google Scholar 

  40. Janssens N, Janicot M, Perera T. The Wnt-dependent signaling pathways as target in oncology drug discovery. Investig New Drugs. 2006;24:263–80. doi:10.1007/s10637-005-5199-4.

    Article  CAS  Google Scholar 

  41. Perez-Plasencia C, Duenas-Gonzalez A, Alatorre-Tavera B. Second hit in cervical carcinogenesis process: involvement of wnt/beta catenin pathway. Int Arch Med. 2008;1:10. doi:10.1186/1755-7682-1-10.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Uren A, Fallen S, Yuan H, et al. Activation of the canonical Wnt pathway during genital keratinocyte transformation: a model for cervical cancer progression. Cancer Res. 2005;65:6199–206. doi:10.1158/0008-5472.CAN-05-0455.

    Article  PubMed  Google Scholar 

  43. Niehrs C, Acebron SP. Mitotic and mitogenic Wnt signalling. EMBO J. 2012;31:2705–13. doi:10.1038/emboj.2012.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90. doi:10.1038/sj.onc.1210421.

    Article  CAS  PubMed  Google Scholar 

  45. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–69.

    CAS  PubMed  Google Scholar 

  46. Krens SFG, Spaink HP, Snaar-Jagalska BE. Functions of the MAPK family in vertebrate-development. FEBS Lett. 2006;580:4984–90. doi:10.1016/j.febslet.2006.08.025.

    Article  CAS  PubMed  Google Scholar 

  47. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36:320–8. doi:10.1016/j.tibs.2011.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  49. Iwakawa M, Ohno T, Imadome K, et al. The radiation-induced cell-death signaling pathway is activated by concurrent use of cisplatin in sequential biopsy specimens from patients with cervical cancer. Cancer Biol Ther. 2007;6:905–11.

    Article  CAS  PubMed  Google Scholar 

  50. Kitahara O, Katagiri T, Tsunoda T, et al. Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia N Y N. 2002;4:295–303. doi:10.1038/sj.neo.7900251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Pérez-Plasencia PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pérez-Plasencia, C., Fernández-Retana, J., de la Garza-Salazar, J.G. (2017). Transcriptome Studies Reveal Altered Signaling Pathways in Cervical Cancer. In: de la Garza-Salazar, J., Morales-Vásquez, F., Meneses-Garcia, A. (eds) Cervical Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-45231-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45231-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45230-2

  • Online ISBN: 978-3-319-45231-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics